6,197 research outputs found

    Interference Channel with a Half-Duplex Out-of-Band Relay

    Full text link
    A Gaussian interference channel (IC) aided by a half-duplex relay is considered, in which the relay receives and transmits in an orthogonal band with respect to the IC. The system thus consists of two parallel channels, the IC and the channel over which the relay is active, which is referred to as Out-of-Band Relay Channel (OBRC). The OBRC is operated by separating a multiple access phase from the sources to the relay and a broadcast phase from the relay to the destinations. Conditions under which the optimal operation, in terms of the sum-capacity, entails either signal relaying and/or interference forwarding by the relay are identified. These conditions also assess the optimality of either separable or non-separable transmission over the IC and OBRC. Specifically, the optimality of signal relaying and separable coding is established for scenarios where the relay-to-destination channels set the performance bottleneck with respect to the source-to-relay channels on the OBRC. Optimality of interference forwarding and non-separable operation is also established in special cases.Comment: 5 pages, 5 figures, to appear in Proceedings of IEEE ISIT 201

    The Ergodic Capacity of Phase-Fading Interference Networks

    Full text link
    We identify the role of equal strength interference links as bottlenecks on the ergodic sum capacity of a KK user phase-fading interference network, i.e., an interference network where the fading process is restricted primarily to independent and uniform phase variations while the channel magnitudes are held fixed across time. It is shown that even though there are K(Kβˆ’1)K(K-1) cross-links, only about K/2K/2 disjoint and equal strength interference links suffice to determine the capacity of the network regardless of the strengths of the rest of the cross channels. This scenario is called a \emph{minimal bottleneck state}. It is shown that ergodic interference alignment is capacity optimal for a network in a minimal bottleneck state. The results are applied to large networks. It is shown that large networks are close to bottleneck states with a high probability, so that ergodic interference alignment is close to optimal for large networks. Limitations of the notion of bottleneck states are also highlighted for channels where both the phase and the magnitudes vary with time. It is shown through an example that for these channels, joint coding across different bottleneck states makes it possible to circumvent the capacity bottlenecks.Comment: 19 page
    • …
    corecore