8,279 research outputs found

    Accelerated Modeling of Near and Far-Field Diffraction for Coronagraphic Optical Systems

    Full text link
    Accurately predicting the performance of coronagraphs and tolerancing optical surfaces for high-contrast imaging requires a detailed accounting of diffraction effects. Unlike simple Fraunhofer diffraction modeling, near and far-field diffraction effects, such as the Talbot effect, are captured by plane-to-plane propagation using Fresnel and angular spectrum propagation. This approach requires a sequence of computationally intensive Fourier transforms and quadratic phase functions, which limit the design and aberration sensitivity parameter space which can be explored at high-fidelity in the course of coronagraph design. This study presents the results of optimizing the multi-surface propagation module of the open source Physical Optics Propagation in PYthon (POPPY) package. This optimization was performed by implementing and benchmarking Fourier transforms and array operations on graphics processing units, as well as optimizing multithreaded numerical calculations using the NumExpr python library where appropriate, to speed the end-to-end simulation of observatory and coronagraph optical systems. Using realistic systems, this study demonstrates a greater than five-fold decrease in wall-clock runtime over POPPY's previous implementation and describes opportunities for further improvements in diffraction modeling performance.Comment: Presented at SPIE ASTI 2018, Austin Texas. 11 pages, 6 figure

    Large scale simulation of turbulence using a hybrid spectral/finite difference solver

    Get PDF
    Performing Direct Numerical Simulation (DNS) of turbulence on large-scale systems (offering more than 1024 cores) has become a challenge in high performance computing. The computer power increase allows now to solve flow problems on large grids (with close to 10^9 nodes). Moreover these large scale simulations can be performed on non-homogeneous turbulent flows. A reasonable amount of time is needed to converge statistics if the large grid size is combined with a large number of cores. To this end we developed a Navier-Stokes solver, dedicated to situations where only one direction is heterogeneous, and particularly suitable for massive parallel architecture. Based on an hybrid approach spectral/finite-difference, we use a volumetric decomposition of the domain to extend the FFTs computation to a large number of cores. Scalability tests using up to 32K cores as well as preliminary results of a full simulation are presented
    corecore