27,685 research outputs found

    Symbolic crosschecking of data-parallel floating-point code

    Get PDF

    Procedural embodiment and magic in linear equations

    Get PDF
    How do students think about algebra? Here we consider a theoretical framework which builds from natural human functioning in terms of embodiment – perceiving the world, acting on it and reflecting on the effect of the actions – to shift to the use of symbolism to solve linear equations. In the main, the students involved in this study do not encapsulate algebraic expressions from process to object, they do not solve ‘evaluation equations’ such as by ‘undoing’ the operations on the left, they do not find such equations easier to solve than , and they do not use general principles of ‘do the same thing to both sides.’ Instead they build their own ways of working based on the embodied actions they perform on the symbols, mentally picking them up and moving them around, with the added ‘magic’ of rules such as ‘change sides, change signs.’ We consider the need for a theoretical framework that includes both embodiment and process-object encapsulation of symbolism and the need for communication of theoretical insights to address the practical problems of teachers and students

    Modeling Algorithms in SystemC and ACL2

    Full text link
    We describe the formal language MASC, based on a subset of SystemC and intended for modeling algorithms to be implemented in hardware. By means of a special-purpose parser, an algorithm coded in SystemC is converted to a MASC model for the purpose of documentation, which in turn is translated to ACL2 for formal verification. The parser also generates a SystemC variant that is suitable as input to a high-level synthesis tool. As an illustration of this methodology, we describe a proof of correctness of a simple 32-bit radix-4 multiplier.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    Evaluating Matrix Circuits

    Full text link
    The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP\mathsf{coRP}, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group SL3(Z)\mathsf{SL}_3(\mathbb{Z}) is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in DET⊆NC2\mathsf{DET} \subseteq \mathsf{NC}^2. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits
    • …
    corecore