29,893 research outputs found

    NC Algorithms for Computing a Perfect Matching and a Maximum Flow in One-Crossing-Minor-Free Graphs

    Full text link
    In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3K_{3,3}-minor-free graphs by building on Kasteleyn's scheme for planar graphs, and stated that this "opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3K_{3,3}-free graphs." In this paper, we finally settle this 30-year-old open problem. Building on recent NC algorithms for planar and bounded-genus perfect matching by Anari and Vazirani and later by Sankowski, we obtain NC algorithms for perfect matching in any minor-closed graph family that forbids a one-crossing graph. This family includes several well-studied graph families including the K3,3K_{3,3}-minor-free graphs and K5K_5-minor-free graphs. Graphs in these families not only have unbounded genus, but can have genus as high as O(n)O(n). Our method applies as well to several other problems related to perfect matching. In particular, we obtain NC algorithms for the following problems in any family of graphs (or networks) with a one-crossing forbidden minor: \bullet Determining whether a given graph has a perfect matching and if so, finding one. \bullet Finding a minimum weight perfect matching in the graph, assuming that the edge weights are polynomially bounded. \bullet Finding a maximum stst-flow in the network, with arbitrary capacities. The main new idea enabling our results is the definition and use of matching-mimicking networks, small replacement networks that behave the same, with respect to matching problems involving a fixed set of terminals, as the larger network they replace.Comment: 21 pages, 6 figure

    Nice labeling problem for event structures: a counterexample

    Full text link
    In this note, we present a counterexample to a conjecture of Rozoy and Thiagarajan from 1991 (called also the nice labeling problem) asserting that any (coherent) event structure with finite degree admits a labeling with a finite number of labels, or equivalently, that there exists a function f:NNf: \mathbb{N} \mapsto \mathbb{N} such that an event structure with degree n\le n admits a labeling with at most f(n)f(n) labels. Our counterexample is based on the Burling's construction from 1965 of 3-dimensional box hypergraphs with clique number 2 and arbitrarily large chromatic numbers and the bijection between domains of event structures and median graphs established by Barth\'elemy and Constantin in 1993

    A volume-ish theorem for the Jones polynomial of alternating knots

    Full text link
    The Volume conjecture claims that the hyperbolic Volume of a knot is determined by the colored Jones polynomial. The purpose of this article is to show a Volume-ish theorem for alternating knots in terms of the Jones polynomial, rather than the colored Jones polynomial: The ratio of the Volume and certain sums of coefficients of the Jones polynomial is bounded from above and from below by constants. Furthermore, we give experimental data on the relation of the growths of the hyperbolic volume and the coefficients of the Jones polynomial, both for alternating and non-alternating knots.Comment: 14 page

    Complexities of 3-manifolds from triangulations, Heegaard splittings, and surgery presentations

    Full text link
    We study complexities of 3-manifolds defined from triangulations, Heegaard splittings, and surgery presentations. We show that these complexities are related by linear inequalities, by presenting explicit geometric constructions. We also show that our linear inequalities are asymptotically optimal. Our results are used in [arXiv:1405.1805] to estimate Cheeger-Gromov L2L^2 ρ\rho-invariants in terms of geometric group theoretic and knot theoretic data.Comment: 16 pages, 9 figures. An error in the triangulation argument found by a referee has been fixed. Constants in Theorems A and B have been improved. Minor remaining typos have been fixed. To appear in the Quarterly Journal of Mathematic

    Exceptional surgeries on alternating knots

    Full text link
    We give a complete classification of exceptional surgeries on hyperbolic alternating knots in the 3-sphere. As an appendix, we also show that the Montesinos knots M (-1/2, 2/5, 1/(2q + 1)) with q at least 5 have no non-trivial exceptional surgeries. This gives the final step in a complete classification of exceptional surgery on arborescent knots.Comment: 30 pages, 19 figures. v2: recomputation performed via the newest version of hikmot, v3: revised according to referees' comments, to appear in Comm. Anal. Geo

    Parallel Algorithms for Geometric Graph Problems

    Full text link
    We give algorithms for geometric graph problems in the modern parallel models inspired by MapReduce. For example, for the Minimum Spanning Tree (MST) problem over a set of points in the two-dimensional space, our algorithm computes a (1+ϵ)(1+\epsilon)-approximate MST. Our algorithms work in a constant number of rounds of communication, while using total space and communication proportional to the size of the data (linear space and near linear time algorithms). In contrast, for general graphs, achieving the same result for MST (or even connectivity) remains a challenging open problem, despite drawing significant attention in recent years. We develop a general algorithmic framework that, besides MST, also applies to Earth-Mover Distance (EMD) and the transportation cost problem. Our algorithmic framework has implications beyond the MapReduce model. For example it yields a new algorithm for computing EMD cost in the plane in near-linear time, n1+oϵ(1)n^{1+o_\epsilon(1)}. We note that while recently Sharathkumar and Agarwal developed a near-linear time algorithm for (1+ϵ)(1+\epsilon)-approximating EMD, our algorithm is fundamentally different, and, for example, also solves the transportation (cost) problem, raised as an open question in their work. Furthermore, our algorithm immediately gives a (1+ϵ)(1+\epsilon)-approximation algorithm with nδn^{\delta} space in the streaming-with-sorting model with 1/δO(1)1/\delta^{O(1)} passes. As such, it is tempting to conjecture that the parallel models may also constitute a concrete playground in the quest for efficient algorithms for EMD (and other similar problems) in the vanilla streaming model, a well-known open problem

    On the Enumeration of all Minimal Triangulations

    Full text link
    We present an algorithm that enumerates all the minimal triangulations of a graph in incremental polynomial time. Consequently, we get an algorithm for enumerating all the proper tree decompositions, in incremental polynomial time, where "proper" means that the tree decomposition cannot be improved by removing or splitting a bag
    corecore