1,712 research outputs found

    Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids

    Get PDF
    During the last two years the RealityGrid project has allowed us to be one of the few scientific groups involved in the development of computational grids. Since smoothly working production grids are not yet available, we have been able to substantially influence the direction of software development and grid deployment within the project. In this paper we review our results from large scale three-dimensional lattice Boltzmann simulations performed over the last two years. We describe how the proactive use of computational steering and advanced job migration and visualization techniques enabled us to do our scientific work more efficiently. The projects reported on in this paper are studies of complex fluid flows under shear or in porous media, as well as large-scale parameter searches, and studies of the self-organisation of liquid cubic mesophases. Movies are available at http://www.ica1.uni-stuttgart.de/~jens/pub/05/05-PhilTransReview.htmlComment: 18 pages, 9 figures, 4 movies available, accepted for publication in Phil. Trans. R. Soc. London Series

    Load Balancing Regular Meshes on SMPS with MPI

    Get PDF
    Domain decomposition for regular meshes on parallel computers has traditionally been performed by attempting to exactly partition the work among the available processors (now cores). However, these strategies often do not consider the inherent system noise which can hinder MPI application scalability to emerging peta-scale machines with 10000+ nodes. In this work, we suggest a solution that uses a tunable hybrid static/dynamic scheduling strategy that can be incorporated into current MPI implementations of mesh codes. By applying this strategy to a 3D jacobi algorithm, we achieve performance gains of at least 16% for 64 SMP nodes

    Steering in computational science: mesoscale modelling and simulation

    Full text link
    This paper outlines the benefits of computational steering for high performance computing applications. Lattice-Boltzmann mesoscale fluid simulations of binary and ternary amphiphilic fluids in two and three dimensions are used to illustrate the substantial improvements which computational steering offers in terms of resource efficiency and time to discover new physics. We discuss details of our current steering implementations and describe their future outlook with the advent of computational grids.Comment: 40 pages, 11 figures. Accepted for publication in Contemporary Physic

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Optimal Renormalization Group Transformation from Information Theory

    Full text link
    Recently a novel real-space RG algorithm was introduced, identifying the relevant degrees of freedom of a system by maximizing an information-theoretic quantity, the real-space mutual information (RSMI), with machine learning methods. Motivated by this, we investigate the information theoretic properties of coarse-graining procedures, for both translationally invariant and disordered systems. We prove that a perfect RSMI coarse-graining does not increase the range of interactions in the renormalized Hamiltonian, and, for disordered systems, suppresses generation of correlations in the renormalized disorder distribution, being in this sense optimal. We empirically verify decay of those measures of complexity, as a function of information retained by the RG, on the examples of arbitrary coarse-grainings of the clean and random Ising chain. The results establish a direct and quantifiable connection between properties of RG viewed as a compression scheme, and those of physical objects i.e. Hamiltonians and disorder distributions. We also study the effect of constraints on the number and type of coarse-grained degrees of freedom on a generic RG procedure.Comment: Updated manuscript with new results on disordered system

    High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation

    Get PDF
    We construct a high order discontinuous Galerkin method for solving general hyperbolic systems of conservation laws. The method is CFL-less, matrix-free, has the complexity of an explicit scheme and can be of arbitrary order in space and time. The construction is based on: (a) the representation of the system of conservation laws by a kinetic vectorial representation with a stiff relaxation term; (b) a matrix-free, CFL-less implicit discontinuous Galerkin transport solver; and (c) a stiffly accurate composition method for time integration. The method is validated on several one-dimensional test cases. It is then applied on two-dimensional and three-dimensional test cases: flow past a cylinder, magnetohydrodynamics and multifluid sedimentation
    • …
    corecore