17 research outputs found

    Parallel approximation of non-interactive zero-sum quantum games

    Full text link
    This paper studies a simple class of zero-sum games played by two competing quantum players: each player sends a mixed quantum state to a referee, who performs a joint measurement on the two states to determine the players' payoffs. We prove that an equilibrium point of any such game can be approximated by means of an efficient parallel algorithm, which implies that one-turn quantum refereed games, wherein the referee is specified by a quantum circuit, can be simulated in polynomial space.Comment: 18 page

    QIP = PSPACE

    Full text link
    We prove that the complexity class QIP, which consists of all problems having quantum interactive proof systems, is contained in PSPACE. This containment is proved by applying a parallelized form of the matrix multiplicative weights update method to a class of semidefinite programs that captures the computational power of quantum interactive proofs. As the containment of PSPACE in QIP follows immediately from the well-known equality IP = PSPACE, the equality QIP = PSPACE follows.Comment: 21 pages; v2 includes corrections and minor revision

    Efficient Online Quantum Generative Adversarial Learning Algorithms with Applications

    Full text link
    The exploration of quantum algorithms that possess quantum advantages is a central topic in quantum computation and quantum information processing. One potential candidate in this area is quantum generative adversarial learning (QuGAL), which conceptually has exponential advantages over classical adversarial networks. However, the corresponding learning algorithm remains obscured. In this paper, we propose the first quantum generative adversarial learning algorithm-- the quantum multiplicative matrix weight algorithm (QMMW)-- which enables the efficient processing of fundamental tasks. The computational complexity of QMMW is polynomially proportional to the number of training rounds and logarithmically proportional to the input size. The core concept of the proposed algorithm combines QuGAL with online learning. We exploit the implementation of QuGAL with parameterized quantum circuits, and numerical experiments for the task of entanglement test for pure state are provided to support our claims

    Using Optimization to Obtain a Width-Independent, Parallel, Simpler, and Faster Positive SDP Solver

    Full text link
    We study the design of polylogarithmic depth algorithms for approximately solving packing and covering semidefinite programs (or positive SDPs for short). This is a natural SDP generalization of the well-studied positive LP problem. Although positive LPs can be solved in polylogarithmic depth while using only O~(log2n/ε2)\tilde{O}(\log^{2} n/\varepsilon^2) parallelizable iterations, the best known positive SDP solvers due to Jain and Yao require O(log14n/ε13)O(\log^{14} n /\varepsilon^{13}) parallelizable iterations. Several alternative solvers have been proposed to reduce the exponents in the number of iterations. However, the correctness of the convergence analyses in these works has been called into question, as they both rely on algebraic monotonicity properties that do not generalize to matrix algebra. In this paper, we propose a very simple algorithm based on the optimization framework proposed for LP solvers. Our algorithm only needs O~(log2n/ε2)\tilde{O}(\log^2 n / \varepsilon^2) iterations, matching that of the best LP solver. To surmount the obstacles encountered by previous approaches, our analysis requires a new matrix inequality that extends Lieb-Thirring's inequality, and a sign-consistent, randomized variant of the gradient truncation technique proposed in

    Epsilon-net method for optimizations over separable states

    Full text link
    We give algorithms for the optimization problem: \max_\rho \ip{Q}{\rho}, where QQ is a Hermitian matrix, and the variable ρ\rho is a bipartite {\em separable} quantum state. This problem lies at the heart of several problems in quantum computation and information, such as the complexity of QMA(2). While the problem is NP-hard, our algorithms are better than brute force for several instances of interest. In particular, they give PSPACE upper bounds on promise problems admitting a QMA(2) protocol in which the verifier performs only logarithmic number of elementary gate on both proofs, as well as the promise problem of deciding if a bipartite local Hamiltonian has large or small ground energy. For Q0Q\ge0, our algorithm runs in time exponential in QF\|Q\|_F. While the existence of such an algorithm was first proved recently by Brand{\~a}o, Christandl and Yard [{\em Proceedings of the 43rd annual ACM Symposium on Theory of Computation}, 343--352, 2011], our algorithm is conceptually simpler.Comment: 21 pages. Comments are welcom

    No-Regret Learning and Equilibrium Computation in Quantum Games

    Full text link
    As quantum processors advance, the emergence of large-scale decentralized systems involving interacting quantum-enabled agents is on the horizon. Recent research efforts have explored quantum versions of Nash and correlated equilibria as solution concepts of strategic quantum interactions, but these approaches did not directly connect to decentralized adaptive setups where agents possess limited information. This paper delves into the dynamics of quantum-enabled agents within decentralized systems that employ no-regret algorithms to update their behaviors over time. Specifically, we investigate two-player quantum zero-sum games and polymatrix quantum zero-sum games, showing that no-regret algorithms converge to separable quantum Nash equilibria in time-average. In the case of general multi-player quantum games, our work leads to a novel solution concept, (separable) quantum coarse correlated equilibria (QCCE), as the convergent outcome of the time-averaged behavior no-regret algorithms, offering a natural solution concept for decentralized quantum systems. Finally, we show that computing QCCEs can be formulated as a semidefinite program and establish the existence of entangled (i.e., non-separable) QCCEs, which cannot be approached via the current paradigm of no-regret learning
    corecore