43 research outputs found

    Heterogeneous Computational Model for Landform Attributes Representation on Multicore and Multi-GPU Systems

    Get PDF
    AbstractMathematical models are often used to simplify landform representation. Its importance is due to the possibility of describing phenomena by means of mathematical models from a data sample. High processing power is needed to represent large areas with a satisfactory level of details. In order to accelerate the solution of complex problems, it is necessary to combine two basic components in heterogeneous systems formed by a multicore with one or more GPUs. In this paper, we present a methodology to represent landform attributes on heterogeneous multicore and multi-GPU systems using high performance computing techniques for efficient solution of two-dimensional polynomial regression model that allow to address large problem instances

    Modelos Paralelos para la Resolución de Problemas de Ingeniería Agrícola

    Full text link
    El presente trabajo se inscribe en el campo de la computación paralela y, más en concreto, en el desarrollo y utilización de modelos computacionales en arquitecturas paralelas heterogéneas para la resolución de problemas aplicados. En la tesis abordamos una serie de problemas que están relacionados con la aplicación de la tecnología en el ámbito de las explotaciones agrícolas y comprenden: la representación del relieve, el manejo de información climática como la temperatura, y la gestión de recursos hídricos. El estudio y la solución a estos problemas en el área en la que se han estudiado tienen un amplio impacto económico y medioambiental. Los problemas basan su formulación en un modelo matemático cuya solución es costosa desde el punto de vista computacional, siendo incluso a veces inviable. La tesis consiste en implementar algoritmos paralelos rápidos y eficientes que resuelven el problema matemático asociado a estos problemas en nodos multicore y multi-GPU. También se estudia, propone y aplican técnicas que permiten a las rutinas diseñadas adaptarse automáticamente a las características del sistema paralelo donde van a ser instaladas y ejecutadas con el objeto de obtener la versión más cercana posible a la óptima a un bajo coste. El objetivo es proporcionar un software a los usuarios que sea portable, pero a la vez, capaz de ejecutarse eficientemente en la ordenador donde se esté trabajando, independientemente de las características de la arquitectura y de los conocimientos que el usuario pueda tener sobre dicha arquitectura.Do Carmo Boratto, M. (2015). Modelos Paralelos para la Resolución de Problemas de Ingeniería Agrícola [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48529TESI

    Efficient Scheduling and High-Performance Graph Partitioning on Heterogeneous CPU-GPU Systems

    Get PDF
    Heterogeneous CPU-GPU systems have emerged as a power-efficient platform for high performance parallelization of the applications. However, effectively exploiting these architectures faces a number of challenges including differences in the programming models of the CPU (MIMD) and the GPU (SIMD), GPU memory constraints, and comparatively low communication bandwidth between the CPU and GPU. As a consequence, high performance execution of applications on these platforms requires designing new adaptive parallelizing methods. In this thesis, first we explore embarrassingly parallel applications where tasks have no inter-dependencies. Although the massive processing power of GPUs provides an attractive opportunity for high-performance execution of embarrassingly parallel tasks on CPU-GPU systems, minimized execution time can only be obtained by optimally distributing the tasks between the processors. In contemporary CPU-GPU systems, the scheduler cannot decide about the appropriate rate distribution. Hence it requires high programming effort to manually divide the tasks among the processors. Herein, we design and implement a new dynamic scheduling heuristic to minimize the execution time of embarrassingly parallel applications on a heterogeneous CPU-GPU system. The scheduler is integrated into a scheduling framework that provides pre-implemented automated scheduling modules, liberating the user from the complexities of scheduling details. The experimental results show that our scheduling approach achieves better to similar performance compared to some of the scheduling algorithms proposed for CPU-GPU systems. We then investigate task dependent applications, where the tasks have data dependencies. The computational tasks and their communication patterns are expressed by a task interaction graph. Scheduling of the task interaction graph on a cluster can be done by first partitioning the graph into a set of computationally balanced partitions in such a way that the communication cost among the partitions is minimized, and subsequently mapping the partitions onto physical processors. Aside from scheduling, graph partitioning is a common computation phase in many application domains, including social network analysis, data mining, and VLSI design. However, irregular and data-dependent graph partitioning sub-tasks pose multiple challenges for efficient GPU utilization, which favors regularity. We design and implement a multilevel graph partitioner on a heterogeneous CPU-GPU system that takes advantage of the high parallel processing power of GPUs by executing the computation-intensive parts of the partitioning sub-tasks on the GPU and assigning the parts with less parallelism to the CPU. Our partitioner aims to overcome some of the challenges arising due to the irregular nature of the algorithm, and memory constraints on GPUs. We present a lock-free scheme since fine-grained synchronization among thousands of GPU threads imposes too high a performance overhead. Experimental results demonstrate that our partitioner outperforms serial and parallel MPI-based partitioners. It performs similar to shared-memory CPU-based parallel graph partitioner. To optimize the graph partitioner performance, we describe an effective and methodological approach to enable a GPU-based multi-level graph partitioning that is tailored specifically for the SIMD architecture. Our solution avoids thread divergence and balances the load over GPU threads by dynamically assigning an appropriate number of threads to process the graph vertices and irregular sized neighbors. Our optimized design is autonomous as all the steps are carried out by the GPU with minimal CPU interference. We show that this design outperforms CPU-based parallel graph partitioner. Finally, we apply some of our partitioning techniques to another graph processing algorithm, minimum spanning tree (MST), that exhibits load imbalance characteristics. We show that extending these techniques helps in achieving a high performance implementation of MST on the GPU

    Autotuning wavefront patterns for heterogeneous architectures

    Get PDF
    Manual tuning of applications for heterogeneous parallel systems is tedious and complex. Optimizations are often not portable, and the whole process must be repeated when moving to a new system, or sometimes even to a different problem size. Pattern based parallel programming models were originally designed to provide programmers with an abstract layer, hiding tedious parallel boilerplate code, and allowing a focus on only application specific issues. However, the constrained algorithmic model associated with each pattern also enables the creation of pattern-specific optimization strategies. These can capture more complex variations than would be accessible by analysis of equivalent unstructured source code. These variations create complex optimization spaces. Machine learning offers well established techniques for exploring such spaces. In this thesis we use machine learning to create autotuning strategies for heterogeneous parallel implementations of applications which follow the wavefront pattern. In a wavefront, computation starts from one corner of the problem grid and proceeds diagonally like a wave to the opposite corner in either two or three dimensions. Our framework partitions and optimizes the work created by these applications across systems comprising multicore CPUs and multiple GPU accelerators. The tuning opportunities for a wavefront include controlling the amount of computation to be offloaded onto GPU accelerators, choosing the number of CPU and GPU threads to process tasks, tiling for both CPU and GPU memory structures, and trading redundant halo computation against communication for multiple GPUs. Our exhaustive search of the problem space shows that these parameters are very sensitive to the combination of architecture, wavefront instance and problem size. We design and investigate a family of autotuning strategies, targeting single and multiple CPU + GPU systems, and both two and three dimensional wavefront instances. These yield an average of 87% of the performance found by offline exhaustive search, with up to 99% in some cases

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Mineral identification using data-mining in hyperspectral infrared imagery

    Get PDF
    Les applications de l’imagerie infrarouge dans le domaine de la géologie sont principalement des applications hyperspectrales. Elles permettent entre autre l’identification minérale, la cartographie, ainsi que l’estimation de la portée. Le plus souvent, ces acquisitions sont réalisées in-situ soit à l’aide de capteurs aéroportés, soit à l’aide de dispositifs portatifs. La découverte de minéraux indicateurs a permis d’améliorer grandement l’exploration minérale. Ceci est en partie dû à l’utilisation d’instruments portatifs. Dans ce contexte le développement de systèmes automatisés permettrait d’augmenter à la fois la qualité de l’exploration et la précision de la détection des indicateurs. C’est dans ce cadre que s’inscrit le travail mené dans ce doctorat. Le sujet consistait en l’utilisation de méthodes d’apprentissage automatique appliquées à l’analyse (au traitement) d’images hyperspectrales prises dans les longueurs d’onde infrarouge. L’objectif recherché étant l’identification de grains minéraux de petites tailles utilisés comme indicateurs minéral -ogiques. Une application potentielle de cette recherche serait le développement d’un outil logiciel d’assistance pour l’analyse des échantillons lors de l’exploration minérale. Les expériences ont été menées en laboratoire dans la gamme relative à l’infrarouge thermique (Long Wave InfraRed, LWIR) de 7.7m à 11.8 m. Ces essais ont permis de proposer une méthode pour calculer l’annulation du continuum. La méthode utilisée lors de ces essais utilise la factorisation matricielle non négative (NMF). En utlisant une factorisation du premier ordre on peut déduire le rayonnement de pénétration, lequel peut ensuite être comparé et analysé par rapport à d’autres méthodes plus communes. L’analyse des résultats spectraux en comparaison avec plusieurs bibliothèques existantes de données a permis de mettre en évidence la suppression du continuum. Les expérience ayant menés à ce résultat ont été conduites en utilisant une plaque Infragold ainsi qu’un objectif macro LWIR. L’identification automatique de grains de différents matériaux tels que la pyrope, l’olivine et le quartz a commencé. Lors d’une phase de comparaison entre des approches supervisées et non supervisées, cette dernière s’est montrée plus approprié en raison du comportement indépendant par rapport à l’étape d’entraînement. Afin de confirmer la qualité de ces résultats quatre expériences ont été menées. Lors d’une première expérience deux algorithmes ont été évalués pour application de regroupements en utilisant l’approche FCC (False Colour Composite). Cet essai a permis d’observer une vitesse de convergence, jusqu’a vingt fois plus rapide, ainsi qu’une efficacité significativement accrue concernant l’identification en comparaison des résultats de la littérature. Cependant des essais effectués sur des données LWIR ont montré un manque de prédiction de la surface du grain lorsque les grains étaient irréguliers avec présence d’agrégats minéraux. La seconde expérience a consisté, en une analyse quantitaive comparative entre deux bases de données de Ground Truth (GT), nommée rigid-GT et observed-GT (rigide-GT: étiquet manuel de la région, observée-GT:étiquetage manuel les pixels). La précision des résultats était 1.5 fois meilleur lorsque l’on a utlisé la base de données observed-GT que rigid-GT. Pour les deux dernières epxérience, des données venant d’un MEB (Microscope Électronique à Balayage) ainsi que d’un microscopie à fluorescence (XRF) ont été ajoutées. Ces données ont permis d’introduire des informations relatives tant aux agrégats minéraux qu’à la surface des grains. Les résultats ont été comparés par des techniques d’identification automatique des minéraux, utilisant ArcGIS. Cette dernière a montré une performance prometteuse quand à l’identification automatique et à aussi été utilisée pour la GT de validation. Dans l’ensemble, les quatre méthodes de cette thèse représentent des méthodologies bénéfiques pour l’identification des minéraux. Ces méthodes présentent l’avantage d’être non-destructives, relativement précises et d’avoir un faible coût en temps calcul ce qui pourrait les qualifier pour être utilisée dans des conditions de laboratoire ou sur le terrain.The geological applications of hyperspectral infrared imagery mainly consist in mineral identification, mapping, airborne or portable instruments, and core logging. Finding the mineral indicators offer considerable benefits in terms of mineralogy and mineral exploration which usually involves application of portable instrument and core logging. Moreover, faster and more mechanized systems development increases the precision of identifying mineral indicators and avoid any possible mis-classification. Therefore, the objective of this thesis was to create a tool to using hyperspectral infrared imagery and process the data through image analysis and machine learning methods to identify small size mineral grains used as mineral indicators. This system would be applied for different circumstances to provide an assistant for geological analysis and mineralogy exploration. The experiments were conducted in laboratory conditions in the long-wave infrared (7.7μm to 11.8μm - LWIR), with a LWIR-macro lens (to improve spatial resolution), an Infragold plate, and a heating source. The process began with a method to calculate the continuum removal. The approach is the application of Non-negative Matrix Factorization (NMF) to extract Rank-1 NMF and estimate the down-welling radiance and then compare it with other conventional methods. The results indicate successful suppression of the continuum from the spectra and enable the spectra to be compared with spectral libraries. Afterwards, to have an automated system, supervised and unsupervised approaches have been tested for identification of pyrope, olivine and quartz grains. The results indicated that the unsupervised approach was more suitable due to independent behavior against training stage. Once these results obtained, two algorithms were tested to create False Color Composites (FCC) applying a clustering approach. The results of this comparison indicate significant computational efficiency (more than 20 times faster) and promising performance for mineral identification. Finally, the reliability of the automated LWIR hyperspectral infrared mineral identification has been tested and the difficulty for identification of the irregular grain’s surface along with the mineral aggregates has been verified. The results were compared to two different Ground Truth(GT) (i.e. rigid-GT and observed-GT) for quantitative calculation. Observed-GT increased the accuracy up to 1.5 times than rigid-GT. The samples were also examined by Micro X-ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) in order to retrieve information for the mineral aggregates and the grain’s surface (biotite, epidote, goethite, diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope, olivine, and quartz). The results of XRF imagery compared with automatic mineral identification techniques, using ArcGIS, and represented a promising performance for automatic identification and have been used for GT validation. In overall, the four methods (i.e. 1.Continuum removal methods; 2. Classification or clustering methods for mineral identification; 3. Two algorithms for clustering of mineral spectra; 4. Reliability verification) in this thesis represent beneficial methodologies to identify minerals. These methods have the advantages to be a non-destructive, relatively accurate and have low computational complexity that might be used to identify and assess mineral grains in the laboratory conditions or in the field

    Across Space and Time. Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    This volume presents a selection of the best papers presented at the forty-first annual Conference on Computer Applications and Quantitative Methods in Archaeology. The theme for the conference was "Across Space and Time", and the papers explore a multitude of topics related to that concept, including databases, the semantic Web, geographical information systems, data collection and management, and more

    NGF Abstracts and Proceedings

    Get PDF

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore