7 research outputs found

    Interior-point algorithms for convex optimization based on primal-dual metrics

    Full text link
    We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms we analyse are so-called short-step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to any self-concordant barrier for any convex cone. We also prove that certain specializations of our algorithms to hyperbolic cone programming problems (which lie strictly between symmetric cone programming and general convex optimization problems in terms of generality) can take advantage of the favourable special structure of hyperbolic barriers. We make new connections to Riemannian geometry, integrals over operator spaces, Gaussian quadrature, and strengthen the connection of our algorithms to quasi-Newton updates and hence first-order methods in general.Comment: 36 page

    Linear optimization over homogeneous matrix cones

    Full text link
    A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone, i.e., for every pair of points in the interior of the cone, there exists a cone automorphism that maps one point to the other. Cones that are homogeneous and self-dual are called symmetric. The symmetric cones include the positive semidefinite matrix cone and the second order cone as important practical examples. In this paper, we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual. We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. We describe transitive subsets of the automorphism groups of the cones and their duals, and important properties of the composition of log-det barrier functions with the automorphisms in this set. Next, we consider extensions to linear slices of the positive semidefinite cone, i.e., intersection of the positive semidefinite cone with a linear subspace, and review conditions that make the cone homogeneous. In the third part of the paper we give a high-level overview of the classical algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation. We conclude by discussing the role of homogeneous cone structure in primal-dual symmetric interior-point methods.Comment: 59 pages, 10 figures, to appear in Acta Numeric

    Parabolic target space and primal-dual interior-point methods

    Get PDF
    In this paper we develop new primal-dual interior-point methods for linear programming problems, which are based on the concept of parabolic target space. We show that such schemes work in the infinity-neighborhood of the primal-dual central path. Nevertheless, these methods possess the best known complexity estimate. We demonstrate that the adaptive-step path-following strategies can be naturally incorporated in such schemes

    Parabolic target space and primal-dual interior-point methods

    Get PDF
    In this paper we develop new primal-dual interior-point methods for linear programming problems, which are based on the concept of parabolic target space. We show that such schemes work in the infinity-neighborhood of the primal-dual central path. Nevertheless, these methods possess the best known complexity estimate. We demonstrate that the adaptive-step path-following strategies can be naturally incorporated in such schemes

    Parabolic target space and primal-dual interior-point methods

    No full text
    In this paper we develop new primal-dual interior-point methods for linear programming, which are based on the concept of parabolic target space. We show that such schemes work in the infinity-neighborhood of the primal-dual central path. Nevertheless these methods possess the best known complexity estimate. We demonstrate that the adaptivestep path-following strategies can be naturally incorporated in such schemesLinear programming, interior-point methods, target following methods
    corecore