2 research outputs found

    HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color Histograms

    Full text link
    While generative adversarial networks (GANs) can successfully produce high-quality images, they can be challenging to control. Simplifying GAN-based image generation is critical for their adoption in graphic design and artistic work. This goal has led to significant interest in methods that can intuitively control the appearance of images generated by GANs. In this paper, we present HistoGAN, a color histogram-based method for controlling GAN-generated images' colors. We focus on color histograms as they provide an intuitive way to describe image color while remaining decoupled from domain-specific semantics. Specifically, we introduce an effective modification of the recent StyleGAN architecture to control the colors of GAN-generated images specified by a target color histogram feature. We then describe how to expand HistoGAN to recolor real images. For image recoloring, we jointly train an encoder network along with HistoGAN. The recoloring model, ReHistoGAN, is an unsupervised approach trained to encourage the network to keep the original image's content while changing the colors based on the given target histogram. We show that this histogram-based approach offers a better way to control GAN-generated and real images' colors while producing more compelling results compared to existing alternative strategies.Comment: CVPR 202

    Palette-based image decomposition, harmonization, and color transfer

    Full text link
    We present a palette-based framework for color composition for visual applications. Color composition is a critical aspect of visual applications in art, design, and visualization. The color wheel is often used to explain pleasing color combinations in geometric terms, and, in digital design, to provide a user interface to visualize and manipulate colors. We abstract relationships between palette colors as a compact set of axes describing harmonic templates over perceptually uniform color wheels. Our framework provides a basis for a variety of color-aware image operations, such as color harmonization and color transfer, and can be applied to videos. To enable our approach, we introduce an extremely scalable and efficient yet simple palette-based image decomposition algorithm. Our approach is based on the geometry of images in RGBXY-space. This new geometric approach is orders of magnitude more efficient than previous work and requires no numerical optimization. We demonstrate a real-time layer decomposition tool. After preprocessing, our algorithm can decompose 6 MP images into layers in 20 milliseconds. We also conducted three large-scale, wide-ranging perceptual studies on the perception of harmonic colors and harmonization algorithms.Comment: 17 pages, 25 figure
    corecore