784,143 research outputs found
Laminated PAINT
Though we may not perceive it, we are surrounded by material-in-flux. Inert materials degrade and the events that comprise our natural and social environments causally thread into a duration that unifies us in our incomprehension. Sounds reveal ever-present vibrations of the landscape: expressions of the flexuous ground on which we stand
Ultra-high resolution Fourier domain optical coherence tomography for resolving thin layers in painted works of art
While OCT has been applied to the non-invasive examination of the stratigraphy of paint layers in recent years, it has been recognized that the resolutions of commercially available OCT cannot compete in depth resolution with conventional microscopic examination of cross-sections of paint samples. It is necessary to achieve resolutions better than 3 microns to resolve the thinnest layers of paint and varnish. In this paper, we demonstrate a Fourier domain ultrahigh resolution OCT at 810nm with depth resolution of 1.8μm in air (or 1.2μm in varnish or paint)
Comparative study on indoor fungi growth incorporated with different antifungal and wall finishings
Indoor air quality is important to the health and comfort of building occupants. There are many sources of pollutants that can be found in the building. One of the sources of pollutants is fungus. Fungi are present almost everywhere in indoor and outdoor environments. Building materials supporting fungal growth must be remediated as rapidly as possible in order to ensure a healthy environment. The goal of this study is to compare the growth of indoor fungal by using three different antifungals such as potassium sorbate, zinc salicylate and calcium benzoate. The indoor fungi were isolated from selected room at Faculty of Civil and Environmental Engineering (FKAAS). The objective is to enumerate the growth of indoor fungal after incorporate with antifungal at different types of wall finishes and evaluate its efficiency. This research was done on three main substrates which are wood, plasterboard and concrete. These main materials were each coated with four types of coating which are thin wallpaper, thick wallpaper, glycerol based paint and acrylic paint. The growth rate was monitored as all the materials was applied with the antifungal. The antifungal has reduced the growth rate of the fungus but depending on the type of material and coating that is used. Results shows that for wood substrate, the best antifungal treatment is a mix of thick wallpaper and calcium benzoate, where the growth stops at 53% (CB 53% < PS 87% < ZS 90% < CTRL 93%). As for plasterboard substrate, thin wallpaper and potassium sorbate hinders the growth at 40% (PS 40% < ZS 73% < CB 80% < CTRL 97%) whereas for concrete substrate, acrylic paint and glycerol based paint incorporated with calcium benzoate renders the growth of fungi to stop at 0% throughout the test (Acrylic Paint = CB 0% < ZS 7% < PS 7% < CTRL 33%) and (Glycerol Based Paint = CB 0% < PS 70% < ZS 73% < CTRL 87%). Thus, the best building material would be concrete with the application of calcium benzoate for paint type of wall finishing’s
Long wavelength optical coherence tomography for painted objects
Optical Coherence Tomography has been successfully applied to the imaging of painted objects in recent years. However, a significant limitation is the low penetration depth of OCT in paint because of the high opacity of paint due to either scattering or absorption. It has been shown that the optimum spectral window for OCT imaging of paint layers is around 2.2μm in wavelength. In this paper, we demonstrate a 1950nm OCT for imaging painted objects using a superfluorescent fiber source at low power
Requirements and test results for the qualification of thermal control coatings
Paint type coatings are often used as engineering materials in critical satellite temperature control applications. The functional features of coatings used for temperature control purposes must remain stable throughout the satellite manufacturing process and the satellite mission. The selection of a particular coating depends on matching coating characteristics to mission requirements. The use of paint coatings on satellites, although having an extensive history, requires that the paint be qualified to each application on an individual basis. Thus, the qualification process through testing serves to ensure that paint coatings as engineering materials will fulfill design requirements
Assisting classical paintings restoration : efficient paint loss detection and descriptor-based inpainting using shared pretraining
In the restoration process of classical paintings, one of the tasks is to map paint loss for documentation and analysing purposes. Because this is such a sizable and tedious job automatic techniques are highly on demand. The currently available tools allow only rough mapping of the paint loss areas while still requiring considerable manual work. We develop here a learning method for paint loss detection that makes use of multimodal image acquisitions and we apply it within the current restoration of the Ghent Altarpiece.
Our neural network architecture is inspired by a multiscale convolutional neural network known as U-Net. In our proposed model, the downsampling of the pooling layers is omitted to enforce translation invariance and the convolutional layers are replaced with dilated convolutions. The dilated convolutions lead to denser computations and improved classification accuracy. Moreover, the proposed method is designed such to make use of multimodal data, which are nowadays routinely acquired during the restoration of master paintings, and which allow more accurate detection of features of interest, including paint losses.
Our focus is on developing a robust approach with minimal user-interference. Adequate transfer learning is here crucial in order to extend the applicability of pre-trained models to the paintings that were not included in the training set, with only modest additional re-training. We introduce a pre-training strategy based on a multimodal, convolutional autoencoder and we fine-tune the model when applying it to other paintings. We evaluate the results by comparing the detected paint loss maps to manual expert annotations and also by running virtual inpainting based on the detected paint losses and comparing the virtually inpainted results with the actual physical restorations. The results indicate clearly the efficacy of the proposed method and its potential to assist in the art conservation and restoration processes
Harman on Mental Paint and the Transparency of Experience
Harman famously argues that a particular class of antifunctionalist arguments from the intrinsic properties of mental states or events (in particular, visual experiences) can be defused by distinguishing “properties of the object of experience from properties of the experience of an object” and by realizing that the latter are not introspectively accessible (or are transparent). More specifically, Harman argues that we are or can be introspectively aware only of the properties of the object of an experience but not the properties of the experience of an object and hence that the fact that functionalism leaves out the properties of the experience of an object does not show that it leaves out anything mentally relevant. In this paper, I argue that Harman’s attempt to defuse the anti-functionalist arguments in question is unsuccessful. After making a distinction between the thesis of experiencing-act transparency and the thesis of mental-paint transparency, (and casting some doubt on the former,) I mainly target the latter and argue that it is false. The thesis of mental-paint transparency is false, I claim, not because mental paint involves some introspectively accessible properties that are different from the properties of the objects of experiences but because what I call the identity thesis is true, viz. that mental paint is the same as (an array of) properties of the object of experience. The identification of mental paint with properties of the object of experience entails that the antifunctionalist arguments Harman criticizes cannot be rightly accused of committing the fallacy of confusing the two
The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled black paint
The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled, carbon-pigmented paint were studied in order to develop a diffuse-reflecting, low-total-reflectance, low-outgassing black paint. Particle sizes ranged between 20 microns and 74 microns. Surface roughness was found to increase with increasing particle size. Relative total reflectance at near-normal incidence (MgO standard) of the filled paints was less than for the unfilled paint between 230 nm and 1800 nm. Total absolute reflectance at 546 nm decreased with increasing particle size at grazing angles of incidence. Near-normal, total emittance was greater for the filled paints than for the unfilled paint. Specularity decreased with increasing particle size over the range studied
Alkali metal silicate protective coating Patent
Composition and production method of alkali metal silicate paint with ultraviolet reflection propertie
- …
