3,667 research outputs found

    Computational Approaches to Lattice Packing and Covering Problems

    Full text link
    We describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinite programming and are based on Voronoi's reduction theory for positive definite quadratic forms, which describes all possible Delone triangulations of Z^d. In practice, our implementations reproduce known results in dimensions d <= 5 and in particular solve the two problems in these dimensions. For d = 6 our computations produce new best known covering as well as packing-covering lattices, which are closely related to the lattice (E6)*. For d = 7, 8 our approach leads to new best known covering lattices. Although we use numerical methods, we made some effort to transform numerical evidences into rigorous proofs. We provide rigorous error bounds and prove that some of the new lattices are locally optimal.Comment: (v3) 40 pages, 5 figures, 6 tables, some corrections, accepted in Discrete and Computational Geometry, see also http://fma2.math.uni-magdeburg.de/~latgeo

    Local Covering Optimality of Lattices: Leech Lattice versus Root Lattice E8

    Full text link
    We show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice E8. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the Delone subdivision of E8. The new lattice yields a sphere covering which is more than 12% less dense than the formerly best known given by the lattice A8*. Currently, the Leech lattice is the first and only known example of a locally optimal lattice covering having a non-simplicial Delone subdivision. We hereby in particular answer a question of Dickson posed in 1968. By showing that the Leech lattice is rigid our answer is even strongest possible in a sense.Comment: 13 pages; (v2) major revision: proof of rigidity corrected, full discussion of E8-case included, src of (v3) contains MAGMA program, (v4) some correction

    A generalization of Voronoi's reduction theory and its application

    Full text link
    We consider Voronoi's reduction theory of positive definite quadratic forms which is based on Delone subdivision. We extend it to forms and Delone subdivisions having a prescribed symmetry group. Even more general, the theory is developed for forms which are restricted to a linear subspace in the space of quadratic forms. We apply the new theory to complete the classification of totally real thin algebraic number fields which was recently initiated by Bayer-Fluckiger and Nebe. Moreover, we apply it to construct new best known sphere coverings in dimensions 9,..., 15.Comment: 31 pages, 2 figures, 2 tables, (v4) minor changes, to appear in Duke Math.

    Packing Topological Minors Half-Integrally

    Full text link
    The packing problem and the covering problem are two of the most general questions in graph theory. The Erd\H{o}s-P\'{o}sa property characterizes the cases when the optimal solutions of these two problems are bounded by functions of each other. Robertson and Seymour proved that when packing and covering HH-minors for any fixed graph HH, the planarity of HH is equivalent with the Erd\H{o}s-P\'{o}sa property. Thomas conjectured that the planarity is no longer required if the solution of the packing problem is allowed to be half-integral. In this paper, we prove that this half-integral version of Erd\H{o}s-P\'{o}sa property holds with respect to the topological minor containment, which easily implies Thomas' conjecture. Indeed, we prove an even stronger statement in which those subdivisions are rooted at any choice of prescribed subsets of vertices. Precisely, we prove that for every graph HH, there exists a function ff such that for every graph GG, every sequence (Rv:v∈V(H))(R_v: v \in V(H)) of subsets of V(G)V(G) and every integer kk, either there exist kk subgraphs G1,G2,...,GkG_1,G_2,...,G_k of GG such that every vertex of GG belongs to at most two of G1,...,GkG_1,...,G_k and each GiG_i is isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each v∈V(H)v \in V(H), or there exists a set ZβŠ†V(G)Z \subseteq V(G) with size at most f(k)f(k) intersecting all subgraphs of GG isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each v∈V(H)v \in V(H). Applications of this theorem include generalizations of algorithmic meta-theorems and structure theorems for HH-topological minor free (or HH-minor free) graphs to graphs that do not half-integrally pack many HH-topological minors (or HH-minors)

    Hitting minors, subdivisions, and immersions in tournaments

    Full text link
    The Erd\H{o}s-P\'osa property relates parameters of covering and packing of combinatorial structures and has been mostly studied in the setting of undirected graphs. In this note, we use results of Chudnovsky, Fradkin, Kim, and Seymour to show that, for every directed graph HH (resp. strongly-connected directed graph HH), the class of directed graphs that contain HH as a strong minor (resp. butterfly minor, topological minor) has the vertex-Erd\H{o}s-P\'osa property in the class of tournaments. We also prove that if HH is a strongly-connected directed graph, the class of directed graphs containing HH as an immersion has the edge-Erd\H{o}s-P\'osa property in the class of tournaments.Comment: Accepted to Discrete Mathematics & Theoretical Computer Science. Difference with the previous version: use of the DMTCS article class. For a version with hyperlinks see the previous versio
    • …
    corecore