776 research outputs found

    The cavity approach for Steiner trees packing problems

    Full text link
    The Belief Propagation approximation, or cavity method, has been recently applied to several combinatorial optimization problems in its zero-temperature implementation, the max-sum algorithm. In particular, recent developments to solve the edge-disjoint paths problem and the prize-collecting Steiner tree problem on graphs have shown remarkable results for several classes of graphs and for benchmark instances. Here we propose a generalization of these techniques for two variants of the Steiner trees packing problem where multiple "interacting" trees have to be sought within a given graph. Depending on the interaction among trees we distinguish the vertex-disjoint Steiner trees problem, where trees cannot share nodes, from the edge-disjoint Steiner trees problem, where edges cannot be shared by trees but nodes can be members of multiple trees. Several practical problems of huge interest in network design can be mapped into these two variants, for instance, the physical design of Very Large Scale Integration (VLSI) chips. The formalism described here relies on two components edge-variables that allows us to formulate a massage-passing algorithm for the V-DStP and two algorithms for the E-DStP differing in the scaling of the computational time with respect to some relevant parameters. We will show that one of the two formalisms used for the edge-disjoint variant allow us to map the max-sum update equations into a weighted maximum matching problem over proper bipartite graphs. We developed a heuristic procedure based on the max-sum equations that shows excellent performance in synthetic networks (in particular outperforming standard multi-step greedy procedures by large margins) and on large benchmark instances of VLSI for which the optimal solution is known, on which the algorithm found the optimum in two cases and the gap to optimality was never larger than 4 %

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by GHG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of GHG \circ H, and get upper and lower bounds of λ3(GH)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page

    On Approximability of Steiner Tree in p\ell_p-metrics

    Full text link
    In the Continuous Steiner Tree problem (CST), we are given as input a set of points (called terminals) in a metric space and ask for the minimum-cost tree connecting them. Additional points (called Steiner points) from the metric space can be introduced as nodes in the solution. In the Discrete Steiner Tree problem (DST), we are given in addition to the terminals, a set of facilities, and any solution tree connecting the terminals can only contain the Steiner points from this set of facilities. Trevisan [SICOMP'00] showed that CST and DST are APX-hard when the input lies in the 1\ell_1-metric (and Hamming metric). Chleb\'ik and Chleb\'ikov\'a [TCS'08] showed that DST is NP-hard to approximate to factor of 96/951.0196/95\approx 1.01 in the graph metric (and consequently \ell_\infty-metric). Prior to this work, it was unclear if CST and DST are APX-hard in essentially every other popular metric! In this work, we prove that DST is APX-hard in every p\ell_p-metric. We also prove that CST is APX-hard in the \ell_{\infty}-metric. Finally, we relate CST and DST, showing a general reduction from CST to DST in p\ell_p-metrics. As an immediate consequence, this yields a 1.391.39-approximation polynomial time algorithm for CST in p\ell_p-metrics.Comment: Abstract shortened due to arxiv's requirement

    On the Public Communication Needed to Achieve SK Capacity in the Multiterminal Source Model

    Full text link
    The focus of this paper is on the public communication required for generating a maximal-rate secret key (SK) within the multiterminal source model of Csisz{\'a}r and Narayan. Building on the prior work of Tyagi for the two-terminal scenario, we derive a lower bound on the communication complexity, RSKR_{\text{SK}}, defined to be the minimum rate of public communication needed to generate a maximal-rate SK. It is well known that the minimum rate of communication for omniscience, denoted by RCOR_{\text{CO}}, is an upper bound on RSKR_{\text{SK}}. For the class of pairwise independent network (PIN) models defined on uniform hypergraphs, we show that a certain "Type S\mathcal{S}" condition, which is verifiable in polynomial time, guarantees that our lower bound on RSKR_{\text{SK}} meets the RCOR_{\text{CO}} upper bound. Thus, PIN models satisfying our condition are RSKR_{\text{SK}}-maximal, meaning that the upper bound RSKRCOR_{\text{SK}} \le R_{\text{CO}} holds with equality. This allows us to explicitly evaluate RSKR_{\text{SK}} for such PIN models. We also give several examples of PIN models that satisfy our Type S\mathcal S condition. Finally, we prove that for an arbitrary multiterminal source model, a stricter version of our Type S\mathcal S condition implies that communication from \emph{all} terminals ("omnivocality") is needed for establishing a SK of maximum rate. For three-terminal source models, the converse is also true: omnivocality is needed for generating a maximal-rate SK only if the strict Type S\mathcal S condition is satisfied. Counterexamples exist that show that the converse is not true in general for source models with four or more terminals.Comment: Submitted to the IEEE Transactions on Information Theory. arXiv admin note: text overlap with arXiv:1504.0062

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    Approximate min–max theorems for Steiner rooted-orientations of graphs and hypergraphs

    Get PDF
    Given an undirected hypergraph and a subset of vertices S subset of V with a specified root vertex r epsilon S, the STEINER ROOTFD-ORIENTATION problem is to find an orientation of all the hyperedges so that in the resulting directed hypergraph the "connectivity" from the root r to the vertices in S is maximized. This is motivated by a multicasting problem in undirected networks as well as a generalization of some classical problems in graph theory. The main results of this paper are the following approximate min-max relations: Given an undirected hypergraph H, if S is 2k-hyperedge-connected in H, then H has a Steiner rooted k-hyperarc-connected orientation. Given an undirected graph G, if S is 2k-element-connected in G, then G has a Steiner rooted k-element-connected orientation. Both results are tight in terms of the connectivity bounds. These also give polynomial time constant factor approximation algorithms for both problems. The proofs are based on submodular techniques, and a graph decomposition technique used in the STEINER TREE PACKING problem. Some complementary hardness results are presented at the end. (c) 2008 Elsevier Inc. All rights reserved
    corecore