21,050 research outputs found

    Beyond the Min-Cut Bound: Deterministic Network Coding for Asynchronous Multirate Broadcast

    Full text link
    In a single hop broadcast packet erasure network, we demonstrate that it is possible to provide multirate packet delivery outside of what is given by the network min-cut. This is achieved by using a deterministic non-block-based network coding scheme, which allows us to sidestep some of the limitations put in place by the block coding model used to determine the network capacity. Under the network coding scheme we outline, the sender is able to transmit network coded packets above the channel rate of some receivers, while ensuring that they still experience nonzero delivery rates. Interestingly, in this generalised form of asynchronous network coded broadcast, receivers are not required to obtain knowledge of all packets transmitted so far. Instead, causal feedback from the receivers about packet erasures is used by the sender to determine a network coded transmission that will allow at least one, but often multiple receivers, to deliver their next needed packet. Although the analysis of deterministic coding schemes is generally a difficult problem, by making some approximations we are able to obtain tractable estimates of the receivers' delivery rates, which are shown to match reasonably well with simulation. Using these estimates, we design a fairness algorithm that allocates the sender's resources so all receivers will experience fair delivery rate performance

    Joint Adaptive Modulation-Coding and Cooperative ARQ for Wireless Relay Networks

    Full text link
    This paper presents a cross-layer approach to jointly design adaptive modulation and coding (AMC) at the physical layer and cooperative truncated automatic repeat request (ARQ) protocol at the data link layer. We first derive an exact closed form expression for the spectral efficiency of the proposed joint AMC-cooperative ARQ scheme. Aiming at maximizing this system performance measure, we then optimize an AMC scheme which directly satisfies a prescribed packet loss rate constraint at the data-link layer. The results indicate that utilizing cooperative ARQ as a retransmission strategy, noticeably enhances the spectral efficiency compared with the system that employs AMC alone at the physical layer. Moreover, the proposed adaptive rate cooperative ARQ scheme outperforms the fixed rate counterpart when the transmission modes at the source and relay are chosen based on the channel statistics. This in turn quantifies the possible gain achieved by joint design of AMC and ARQ in wireless relay networks.Comment: 5 pages, 4 figures, To appear in the Proceedings of the 2008 IEEE International Symposium on Wireless Communication Systems (ISWCS), Rykevick, Island, Oct 200

    CASPR: Judiciously Using the Cloud for Wide-Area Packet Recovery

    Full text link
    We revisit a classic networking problem -- how to recover from lost packets in the best-effort Internet. We propose CASPR, a system that judiciously leverages the cloud to recover from lost or delayed packets. CASPR supplements and protects best-effort connections by sending a small number of coded packets along the highly reliable but expensive cloud paths. When receivers detect packet loss, they recover packets with the help of the nearby data center, not the sender, thus providing quick and reliable packet recovery for latency-sensitive applications. Using a prototype implementation and its deployment on the public cloud and the PlanetLab testbed, we quantify the benefits of CASPR in providing fast, cost effective packet recovery. Using controlled experiments, we also explore how these benefits translate into improvements up and down the network stack

    Collision Helps - Algebraic Collision Recovery for Wireless Erasure Networks

    Full text link
    Current medium access control mechanisms are based on collision avoidance and collided packets are discarded. The recent work on ZigZag decoding departs from this approach by recovering the original packets from multiple collisions. In this paper, we present an algebraic representation of collisions which allows us to view each collision as a linear combination of the original packets. The transmitted, colliding packets may themselves be a coded version of the original packets. We propose a new acknowledgment (ACK) mechanism for collisions based on the idea that if a set of packets collide, the receiver can afford to ACK exactly one of them and still decode all the packets eventually. We analytically compare delay and throughput performance of such collision recovery schemes with other collision avoidance approaches in the context of a single hop wireless erasure network. In the multiple receiver case, the broadcast constraint calls for combining collision recovery methods with network coding across packets at the sender. From the delay perspective, our scheme, without any coordination, outperforms not only a ALOHA-type random access mechanisms, but also centralized scheduling. For the case of streaming arrivals, we propose a priority-based ACK mechanism and show that its stability region coincides with the cut-set bound of the packet erasure network
    • …
    corecore