3 research outputs found

    Packaging and Sharing Machine Learning Models via the Acumos AI Open Platform

    Full text link
    Applying Machine Learning (ML) to business applications for automation usually faces difficulties when integrating diverse ML dependencies and services, mainly because of the lack of a common ML framework. In most cases, the ML models are developed for applications which are targeted for specific business domain use cases, leading to duplicated effort, and making reuse impossible. This paper presents Acumos, an open platform capable of packaging ML models into portable containerized microservices which can be easily shared via the platform's catalog, and can be integrated into various business applications. We present a case study of packaging sentiment analysis and classification ML models via the Acumos platform, permitting easy sharing with others. We demonstrate that the Acumos platform reduces the technical burden on application developers when applying machine learning models to their business applications. Furthermore, the platform allows the reuse of readily available ML microservices in various business domains.Comment: ICMLA 2018: International Conference on Machine Learning and Application

    ISTHMUS: Secure, Scalable, Real-time and Robust Machine Learning Platform for Healthcare

    Full text link
    In recent times, machine learning (ML) and artificial intelligence (AI) based systems have evolved and scaled across different industries such as finance, retail, insurance, energy utilities, etc. Among other things, they have been used to predict patterns of customer behavior, to generate pricing models, and to predict the return on investments. But the successes in deploying machine learning models at scale in those industries have not translated into the healthcare setting. There are multiple reasons why integrating ML models into healthcare has not been widely successful, but from a technical perspective, general-purpose commercial machine learning platforms are not a good fit for healthcare due to complexities in handling data quality issues, mandates to demonstrate clinical relevance, and a lack of ability to monitor performance in a highly regulated environment with stringent security and privacy needs. In this paper, we describe Isthmus, a turnkey, cloud-based platform which addresses the challenges above and reduces time to market for operationalizing ML/AI in healthcare. Towards the end, we describe three case studies which shed light on Isthmus capabilities. These include (1) supporting an end-to-end lifecycle of a model which predicts trauma survivability at hospital trauma centers, (2) bringing in and harmonizing data from disparate sources to create a community data platform for inferring population as well as patient level insights for Social Determinants of Health (SDoH), and (3) ingesting live-streaming data from various IoT sensors to build models, which can leverage real-time and longitudinal information to make advanced time-sensitive predictions.Comment: 11 pages, 7 figures. Comments are welcom

    Quantifying Transparency of Machine Learning Systems through Analysis of Contributions

    Full text link
    Increased adoption and deployment of machine learning (ML) models into business, healthcare and other organisational processes, will result in a growing disconnect between the engineers and researchers who developed the models and the model's users and other stakeholders, such as regulators or auditors. This disconnect is inevitable, as models begin to be used over a number of years or are shared among third parties through user communities or via commercial marketplaces, and it will become increasingly difficult for users to maintain ongoing insight into the suitability of the parties who created the model, or the data that was used to train it. This could become problematic, particularly where regulations change and once-acceptable standards become outdated, or where data sources are discredited, perhaps judged to be biased or corrupted, either deliberately or unwittingly. In this paper we present a method for arriving at a quantifiable metric capable of ranking the transparency of the process pipelines used to generate ML models and other data assets, such that users, auditors and other stakeholders can gain confidence that they will be able to validate and trust the data sources and human contributors in the systems that they rely on for their business operations. The methodology for calculating the transparency metric, and the type of criteria that could be used to make judgements on the visibility of contributions to systems are explained and illustrated through an example scenario
    corecore