17,723 research outputs found

    Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome

    Get PDF
    Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly strategies in order to produce a contiguous and complete eukaryotic genome assembly, focusing on the filamentous fungus Verticillium dahliae. Compared with Illumina-based assemblies of the V. dahliae genome, hybrid assemblies that also include PacBio- generated long reads establish superior contiguity. Intriguingly, provided that sufficient sequence depth is reached, assemblies solely based on PacBio reads outperform hybrid assemblies and even result in fully assembled chromosomes. Furthermore, the addition of optical map data allowed us to produce a gapless and complete V. dahliae genome assembly of the expected eight chromosomes from telomere to telomere. Consequently, we can now study genomic regions that were previously not assembled or poorly assembled, including regions that are populated by repetitive sequences, such as transposons, allowing us to fully appreciate an organism’s biological complexity. Our data show that a combination of PacBio-generated long reads and optical mapping can be used to generate complete and gapless assemblies of fungal genomes. IMPORTANCE Studying whole-genome sequences has become an important aspect of biological research. The advent of nextgeneration sequencing (NGS) technologies has nowadays brought genomic science within reach of most research laboratories, including those that study nonmodel organisms. However, most genome sequencing initiatives typically yield (highly) fragmented genome assemblies. Nevertheless, considerable relevant information related to genome structure and evolution is likely hidden in those nonassembled regions. Here, we investigated a diverse set of strategies to obtain gapless genome assemblies, using the genome of a typical ascomycete fungus as the template. Eventually, we were able to show that a combination of PacBiogenerated long reads and optical mapping yields a gapless telomere-to-telomere genome assembly, allowing in-depth genome sanalyses to facilitate functional studies into an organism’s biology

    A Gapless, Unambiguous Genome Sequence of the Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933.

    Get PDF
    Escherichia coli EDL933 is the prototypic strain for enterohemorrhagic E. coli serotype O157:H7, associated with deadly food-borne outbreaks. Because the publicly available sequence of the EDL933 genome has gaps and >6,000 ambiguous base calls, we here present an updated high-quality, unambiguous genome sequence with no assembly gaps

    Minimum error correction-based haplotype assembly: considerations for long read data

    Full text link
    The single nucleotide polymorphism (SNP) is the most widely studied type of genetic variation. A haplotype is defined as the sequence of alleles at SNP sites on each haploid chromosome. Haplotype information is essential in unravelling the genome-phenotype association. Haplotype assembly is a well-known approach for reconstructing haplotypes, exploiting reads generated by DNA sequencing devices. The Minimum Error Correction (MEC) metric is often used for reconstruction of haplotypes from reads. However, problems with the MEC metric have been reported. Here, we investigate the MEC approach to demonstrate that it may result in incorrectly reconstructed haplotypes for devices that produce error-prone long reads. Specifically, we evaluate this approach for devices developed by Illumina, Pacific BioSciences and Oxford Nanopore Technologies. We show that imprecise haplotypes may be reconstructed with a lower MEC than that of the exact haplotype. The performance of MEC is explored for different coverage levels and error rates of data. Our simulation results reveal that in order to avoid incorrect MEC-based haplotypes, a coverage of 25 is needed for reads generated by Pacific BioSciences RS systems.Comment: 17 pages, 6 figure

    Comparative genome analysis of Wolbachia strain wAu

    Get PDF
    BACKGROUND: Wolbachia intracellular bacteria can manipulate the reproduction of their arthropod hosts, including inducing sterility between populations known as cytoplasmic incompatibility (CI). Certain strains have been identified that are unable to induce or rescue CI, including wAu from Drosophila. Genome sequencing and comparison with CI-inducing related strain wMel was undertaken in order to better understand the molecular basis of the phenotype. RESULTS: Although the genomes were broadly similar, several rearrangements were identified, particularly in the prophage regions. Many orthologous genes contained single nucleotide polymorphisms (SNPs) between the two strains, but a subset containing major differences that would likely cause inactivation in wAu were identified, including the absence of the wMel ortholog of a gene recently identified as a CI candidate in a proteomic study. The comparative analyses also focused on a family of transcriptional regulator genes implicated in CI in previous work, and revealed numerous differences between the strains, including those that would have major effects on predicted function. CONCLUSIONS: The study provides support for existing candidates and novel genes that may be involved in CI, and provides a basis for further functional studies to examine the molecular basis of the phenotype

    Large-scale and significant expression from pseudogenes in Sodalis glossinidius – a facultative bacterial endosymbiont

    Get PDF
    The majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50 % pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple ‘omic’ strategies, combining Illumina and Pacific Biosciences Single-Molecule Real-Time DNA sequencing and annotation, stranded RNA sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53 and 74 % of the Sodalis transcriptome remains active in cell-free culture. The mean sense transcription from coding domain sequences (CDSs) is four times greater than that from pseudogenes. Comparative genomic analysis of six Illumina-sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40 % of the 2729 genes in the core genome, suggesting that they are stable and/or that Sodalis is a recent introduction across the genus Glossina as a facultative symbiont. These data shed further light on the importance of transcriptional and translational control in deciphering host–microbe interactions. The combination of genomics, transcriptomics and proteomics gives a multidimensional perspective for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches
    corecore