677,765 research outputs found
Consecutive Bright Pulses in the Vela Pulsar
We report on the discovery of consecutive bright radio pulses from the Vela
pulsar, a new phenomenon that may lead to a greater understanding of the pulsar
emission mechanism. This results from a total of 345 hr worth of observations
of the Vela pulsar using the University of Tasmania's 26 m radio telescope to
study the frequency and statistics of abnormally bright pulses and sub-pulses.
The bright pulses show a tendency to appear consecutively. The observations
found two groups of six consecutive bright pulses and many groups of two to
five bright pulses in a row. The strong radio emission process that produces
the six bright pulses lasts between 0.4 and 0.6 s. The numbers of bright pulses
in sequence far exceed what would be expected if individual bright pulses were
independent random events. Consecutive bright pulses must be generated by an
emission process that is long lived relative to the rotation period of the
neutron star.Comment: Published in The Astrophysical Journal Letters 2011 June 9 (3 pages,
2 figures, 1 table
The Fantastic Four: A plug 'n' play set of optimal control pulses for enhancing nmr spectroscopy
We present highly robust, optimal control-based shaped pulses designed to
replace all 90{\deg} and 180{\deg} hard pulses in a given pulse sequence for
improved performance. Special attention was devoted to ensuring that the pulses
can be simply substituted in a one-to-one fashion for the original hard pulses
without any additional modification of the existing sequence. The set of four
pulses for each nucleus therefore consists of 90{\deg} and 180{\deg}
point-to-point (PP) and universal rotation (UR) pulses of identical duration.
These 1 ms pulses provide uniform performance over resonance offsets of 20 kHz
(1H) and 35 kHz (13C) and tolerate reasonably large radio frequency (RF)
inhomogeneity/miscalibration of (+/-)15% (1H) and (+/-)10% (13C), making them
especially suitable for NMR of small-to-medium-sized molecules (for which
relaxation effects during the pulse are negligible) at an accessible and widely
utilized spectrometer field strength of 600 MHz. The experimental performance
of conventional hard-pulse sequences is shown to be greatly improved by
incorporating the new pulses, each set referred to as the Fantastic Four
(Fanta4).Comment: 28 pages, 19 figure
High Order Coherent Control Sequences of Finite-Width Pulses
The performance of sequences of designed pulses of finite length is
analyzed for a bath of spins and it is compared with that of sequences of
ideal, instantaneous pulses. The degree of the design of the pulse strongly
affects the performance of the sequences. Non-equidistant, adapted sequences of
pulses, which equal instantaneous ones up to , outperform
equidistant or concatenated sequences. Moreover, they do so at low energy cost
which grows only logarithmically with the number of pulses, in contrast to
standard pulses with linear growth.Comment: 6 pages, 5 figures, new figures, published versio
UWB microstrip filter design using a time-domain technique
A time-domain technique is proposed for ultra-wideband (UWB) microstrip-filter design. The design technique uses the reflection coefficient (S11) specified in the frequency domain. When the frequency response of the UWB filter is given, the response will be approximated by a series of UWB pulses in the time domain. The UWB pulses are Gaussian pulses of the same bandwidth with different time delays. The method tries to duplicate the reflection scenario in the time domain for very narrow Gaussian pulses (to obtain the impulse response of the system) when the pulses are passed through the filter, and obtains the value of the filter coefficients based on the number of UWB pulses, amplitudes, and delays of the pulses
Stable operation of a synchronously pumped colliding-pulse mode-locked ring dye laser
Pulses of 100-fsec duration are obtained by synchronous pumping of a colliding-pulse ring dye laser with a mode-locked Ar+-ion laser. Stable operation of the synchronously pumped colliding-pulse mode-locked laser over hours was obtained by a suitable choice of the distance between the gain and the absorber in combination with an appro-priate pump-pulse sequence. Passive mode locking of a ring dye laser by the inter-action of two counterpropagating pulses in a thin sat-urable absorber (colliding-pulse mode locking) yields femtosecond laser pulses. ' In these lasers the gain medium (Rhodamine 6G) is pumped by a cw Ar+-ion laser. The saturable absorber (DODCI, 3,3-diethyl-oxadicarbocyanine iodide) synchronizes two counter-propagating pulses meeting in the absorber jet stream. The colliding pulses form a transient grating, which synchronizes and stabilizes the pulses.2 In order to ensure equal amplification for both counterpropagatin
A comprehensive analysis of Fermi Gamma-Ray Burst Data: IV. Spectral lag and Its Relation to Ep Evolution
The spectral evolution and spectral lag behavior of 92 bright pulses from 84
gamma-ray bursts (GRBs) observed by the Fermi GBM telescope are studied. These
pulses can be classified into hard-to-soft pulses (H2S, 64/92),
H2S-dominated-tracking pulses (21/92), and other tracking pulses (7/92). We
focus on the relationship between spectral evolution and spectral lags of H2S
and H2S-dominated-tracking pulses. %in hard-to-soft pulses (H2S, 64/92) and
H2S-dominating-tracking (21/92) pulses. The main trend of spectral evolution
(lag behavior) is estimated with
(), where is the peak photon
energy in the radiation spectrum, is the observer time relative to the
beginning of pulse , and is the spectral lag of photons
with energy with respect to the energy band - keV. For H2S and
H2S-dominated-tracking pulses, a weak correlation between
and is found, where is the pulse width. We also study the spectral
lag behavior with peak time of pulses for 30 well-shaped pulses
and estimate the main trend of the spectral lag behavior with . It is found that is correlated with
. We perform simulations under a phenomenological model of spectral
evolution, and find that these correlations are reproduced. We then conclude
that spectral lags are closely related to spectral evolution within the pulse.
The most natural explanation of these observations is that the emission is from
the electrons in the same fluid unit at an emission site moving away from the
central engine, as expected in the models invoking magnetic dissipation in a
moderately-high- outflow.Comment: 58 pages, 11 figures, 3 tables. ApJ in pres
- …
