127,088 research outputs found
Genetic learning particle swarm optimization
Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO
A comparison between the Pittsburgh and Michigan approaches for the binary PSO algorithm
IEEE Congress on Evolutionary Computation. Edimburgo, 5 september 2005This paper shows the performance of the binary PSO algorithm as a classification system. These systems are classified in two different perspectives: the Pittsburgh and the Michigan approaches. In order to implement the Michigan approach binary PSO algorithm, the standard PSO dynamic equations are modified, introducing a repulsive force to favor particle competition. A dynamic neighborhood, adapted to classification problems, is also defined. Both classifiers are tested using a reference set of problems, where both classifiers achieve better performance than many classification techniques. The Michigan PSO classifier shows clear advantages over the Pittsburgh one both in terms of success rate and speed. The Michigan PSO can also be generalized to the continuous version of the PSO
Node placement in Wireless Mesh Networks: a comparison study of WMN-SA and WMN-PSO simulation systems
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a simulation system based on Simulated Annealing (SA) for solving node placement problem in wireless mesh networks, called WMN-SA. Also, we implemented a Particle Swarm Optimization (PSO) based simulation system, called WMN-PSO. In this paper, we compare two systems considering calculation time. From the simulation results, when the area size is 32 × 32 and 64 × 64, WMN-SA is better than WMN-PSO. When the area size is 128 × 128, WMN-SA performs better than WMN-PSO. However, WMN-SA needs more calculation time than WMN-PSO.Peer ReviewedPostprint (author's final draft
- …
