104,886 research outputs found

    Seeding of the Self-Modulation in a Long Proton Bunch by Charge Cancellation with a Short Electron Bunch

    Full text link
    In plasma wakefield accelerators (e.g. AWAKE) the proton bunch self-modulation is seeded by the ionization front of a high-power laser pulse ionizing a vapour and by the resulting steep edge of the driving bunch profile inside the created plasma. In this paper, we present calculations in 2D linear theory for a concept of a different self-modulation seeding mechanism based on electron injection. The whole proton bunch propagates through a preformed plasma and the effective beam current is modulated by the external injection of a short electron bunch at the centre of the proton beam. The resulting sharp edge in the effective beam current in the trailing part of the proton bunch is driving large wakefields that can lead to a growth of the seeded self-modulation (SSM). Furthermore, we discuss the feasibility for applications in AWAKE Run 2

    Self-modulation instability of a long proton bunch in plasmas

    Full text link
    An analytical model for the self-modulation instability of a long relativistic proton bunch propagating in uniform plasmas is developed. The self-modulated proton bunch resonantly excites a large amplitude plasma wave (wake field), which can be used for acceleration of plasma electrons. Analytical expressions for the linear growth rate and the number of exponentiations are given. We use the full three-dimensional particle-in-cell (PIC) simulations to study the beam self-modulation and the transition to the nonlinear stage. It is shown that the self-modulation of the proton bunch competes with the hosing instability which tends to destroy the plasma wave. A method is proposed and studied through PIC simulations to circumvent this problem which relies on the seeding of the self-modulation instability in the bunch

    Commissioning of the electron injector for the AWAKE experiment

    Get PDF
    The advanced wakefield experiment (AWAKE) at CERN is the first proton beam-driven plasma wakefield acceleration experiment. The main goal of AWAKE RUN 1 was to demonstrate seeded self-modulation (SSM) of the proton beam and electron witness beam acceleration in the plasma wakefield. For the AWAKE experiment, a 10-meter-long Rubidium-vapor cell together with a high-power laser for ionization was used to generate the plasma. The plasma wakefield is driven by a 400 GeV/c proton beam extracted from the super proton synchrotron (SPS), which undergoes a seeded self-modulation process in the plasma. The electron witness beam used to probe the wakefields is generated from an S-band RF photo-cathode gun and then accelerated by a booster structure up to energies between 16 and 20 MeV. The first run of the AWAKE experiment revealed that the maximum energy gain after the plasma cell is 2 GeV, and the SSM mechanism of the proton beam was verified. In this paper, we will present the details of the AWAKE electron injector. A comparison of the measured electron beam parameters, such as beam size, energy, and normalized emittance, with the simulation results was performed

    Spin-Dependent WIMPs in DAMA?

    Get PDF
    We investigate whether the annual modulation observed in the DAMA experiment can be due to a weakly-interacting massive particle (WIMP) with an axial-vector (spin-dependent; SD) coupling to nuclei. We evaluate the SD WIMP-proton cross section under the assumption that such scattering accounts for the DAMA modulation, and we do the same for a SD WIMP-neutron cross section. We show that SD WIMP-proton scattering is ruled out in a model-independent fashion by null searches for energetic neutrinos from WIMP annihilation in the Sun, and that SD WIMP-neutron scattering is ruled out for WIMP masses > 20 GeV by the null result with the DAMA Xe detector. A SD WIMP with mass < 20 GeV is still compatible, but only if the SD WIMP-neutron interaction is four orders of magnitude greater than the WIMP-proton interaction.Comment: 4 pages, 2 figure

    Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009

    Full text link
    The last solar minimum activity period, and the consequent minimum modulation conditions for cosmic rays, was unusual. The highest levels of galactic protons were recorded at Earth in late 2009 in contrast to expectations. Proton spectra observed for 2006 to 2009 from the PAMELA cosmic ray detector on-board the Resurs-DK1 satellite are presented together with the solutions of a comprehensive numerical model for the solar modulation of cosmic rays. The model is used to determine what mechanisms were mainly responsible for the modulation of protons during this period, and why the observed spectrum for 2009 was the highest ever recorded. From mid-2006 until December 2009 we find that the spectra became significantly softer because increasingly more low energy protons had reached Earth. To simulate this effect, the rigidity dependence of the diffusion coefficients had to decrease significantly below ~3 GeV. The modulation minimum period of 2009 can thus be described as relatively more "diffusion dominated" than previous solar minima. However, we illustrate that drifts still had played a significant role but that the observable modulation effects were not as well correlated with the waviness of the heliospheric current sheet as before. Protons still experienced global gradient and curvature drifts as the heliospheric magnetic field had decreased significantly until the end of 2009, in contrast to the moderate decreases observed during previous minimum periods. We conclude that all modulation processes contributed to the observed increases in the proton spectra for this period, exhibiting an intriguing interplay of these major mechanisms

    A Method to Determine the Maximum Radius of Defocused Protons after Self-Modulation in AWAKE

    Full text link
    The AWAKE experiment at CERN aims to drive GV/m plasma wakefields with a self-modulated proton drive bunch, and to use them for electron acceleration. During the self-modulation process, protons are defocused by the transverse plasma wakefields and form a halo around the focused bunch core. The two-screen setup integrated in AWAKE measures the transverse, time-integrated proton bunch distribution downstream the \unit[10]{m} long plasma to detect defocused protons. By measuring the maximum radius of the defocused protons we attempt calculate properties of the self-modulation. In this article, we develop a routine to identify the maximum radius of the defocused protons, based on a standard contour method. We compare the maximum radius obtained from the contour to the logarithmic lineouts of the image to show that the determined radius identifies the edge of the distribution.Comment: 3 pages, 4 figures, EAAC 2017 NIMA proceeding
    corecore