3 research outputs found

    Attention Aware Wavelet-based Detection of Morphed Face Images

    Full text link
    Morphed images have exploited loopholes in the face recognition checkpoints, e.g., Credential Authentication Technology (CAT), used by Transportation Security Administration (TSA), which is a non-trivial security concern. To overcome the risks incurred due to morphed presentations, we propose a wavelet-based morph detection methodology which adopts an end-to-end trainable soft attention mechanism . Our attention-based deep neural network (DNN) focuses on the salient Regions of Interest (ROI) which have the most spatial support for morph detector decision function, i.e, morph class binary softmax output. A retrospective of morph synthesizing procedure aids us to speculate the ROI as regions around facial landmarks , particularly for the case of landmark-based morphing techniques. Moreover, our attention-based DNN is adapted to the wavelet space, where inputs of the network are coarse-to-fine spectral representations, 48 stacked wavelet sub-bands to be exact. We evaluate performance of the proposed framework using three datasets, VISAPP17, LMA, and MorGAN. In addition, as attention maps can be a robust indicator whether a probe image under investigation is genuine or counterfeit, we analyze the estimated attention maps for both a bona fide image and its corresponding morphed image. Finally, we present an ablation study on the efficacy of utilizing attention mechanism for the sake of morph detection.Comment: IJCB 202

    Face Morphing Attack Generation & Detection: A Comprehensive Survey

    Full text link
    The vulnerability of Face Recognition System (FRS) to various kind of attacks (both direct and in-direct attacks) and face morphing attacks has received a great interest from the biometric community. The goal of a morphing attack is to subvert the FRS at Automatic Border Control (ABC) gates by presenting the Electronic Machine Readable Travel Document (eMRTD) or e-passport that is obtained based on the morphed face image. Since the application process for the e-passport in the majority countries requires a passport photo to be presented by the applicant, a malicious actor and the accomplice can generate the morphed face image and to obtain the e-passport. An e-passport with a morphed face images can be used by both the malicious actor and the accomplice to cross the border as the morphed face image can be verified against both of them. This can result in a significant threat as a malicious actor can cross the border without revealing the track of his/her criminal background while the details of accomplice are recorded in the log of the access control system. This survey aims to present a systematic overview of the progress made in the area of face morphing in terms of both morph generation and morph detection. In this paper, we describe and illustrate various aspects of face morphing attacks, including different techniques for generating morphed face images but also the state-of-the-art regarding Morph Attack Detection (MAD) algorithms based on a stringent taxonomy and finally the availability of public databases, which allow to benchmark new MAD algorithms in a reproducible manner. The outcomes of competitions/benchmarking, vulnerability assessments and performance evaluation metrics are also provided in a comprehensive manner. Furthermore, we discuss the open challenges and potential future works that need to be addressed in this evolving field of biometrics

    Deep Face Representations for Differential Morphing Attack Detection

    Full text link
    The vulnerability of facial recognition systems to face morphing attacks is well known. Many different approaches for morphing attack detection have been proposed in the scientific literature. However, the morphing attack detection algorithms proposed so far have only been trained and tested on datasets whose distributions of image characteristics are either very limited (e.g. only created with a single morphing tool) or rather unrealistic (e.g. no print-scan transformation). As a consequence, these methods easily overfit on certain image types and the results presented cannot be expected to apply to real-world scenarios. For example, the results of the latest NIST Face Recognition Vendor Test MORPH show that the submitted MAD algorithms lack robustness and performance when considering unseen and challenging datasets. In this work, subsets of the FERET and FRGCv2 face databases are used to create a large realistic database for training and testing of morphing attack detection algorithms, containing a large number of ICAO-compliant bona fide facial images, corresponding unconstrained probe images, and morphed images created with four different tools. Furthermore, multiple post-processings are applied on the reference images, e.g. print-scan and JPEG2000 compression. On this database, previously proposed differential morphing algorithms are evaluated and compared. In addition, the application of deep face representations for differential morphing attack detection algorithms is investigated. It is shown that algorithms based on deep face representations can achieve very high detection performance (less than 3\%~\mbox{D-EER}) and robustness with respect to various post-processings. Finally, the limitations of the developed methods are analyzed
    corecore