28,858 research outputs found
Automated online preconcentration system for the determination of trace amounts of lead using Pb-selective resin and inductively coupled plasma-atomic emission spectrometry
An automated sequential-injection online preconcentration system was developed for the determination of lead by inductively coupled plasma - atomic emission spectrometry (ICP-AES). The preconcentration of lead was performed with a minicolumn containing a lead-selective resin, Analig Pb-01, which was installed between a selection and a switching valve. In an acidic condition ( pH 1), lead could be adsorbed on the resin. The concentrated lead was afterward eluted with 25 mu L of 0.06 M nitrilotriacetic acid (NTA) solution ( pH 9) and was subsequently transported into the nebulizer of ICP-AES for quantification. The selectivity of the resin toward lead was examined using a solution containing a mixture of 61 elements. When a sample volume of 5 mL was used, the quantitative collection of lead ( >= 97%) was achieved, along with an enrichment factor of 19, a sampling frequency of 12 samples hr(-1), a detection limit of 70 pg mL(-1), and a lowest quantification limit of 100 pg mL(-1). The linear dynamic range was 0.1 to 5 ng mL(-1), and the relative standard deviation (n = 9) was 0.5% at a 5 ng mL(-1) Pb level. The detection limit of 30 pg mL(-1) and lowest quantification limit of 50 pg mL(-1) could be achieved when 10 mL of sample volume was used. The accuracy of the proposed method was validated by determining lead in the standard reference material of river water (SLRS-4), and its applicability to the determination of lead in environmental river water samples was demonstrated.</p
On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual minicolumns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).
The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 mu g l-1, respectively. The total analysis time was about 9.4 min.
The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results. </p
An easily prepared graphene oxide-ionic liquid hybrid nanomaterial for micro-solid phase extraction and preconcentration of Hg in water samples
A preconcentration method based on the use of graphene oxide (GO) functionalized with an ionic liquid (IL) was developed for trace Hg determination in water samples. The IL-GO hybrid nanomaterial was prepared by a simple procedure to functionalize GO with the IL 1-butyl-3-dodecylimidazolium bromide ([C4C12im]Br) and its performance as a sorption material for Hg was evaluated. A microcolumn filled with the IL-GO nanomaterial was used for preconcentration and determination of Hg followed by electrothermal atomic absorption spectrometry (ETAAS) detection. Mercury was retained at pH 5.0 and 20% (v/v) HNO3 was used for the elution of Hg from the microcolumn. The effects of different variables, including the sample volume, extraction time, sample flow rate, type and concentration of eluent and eluent flow rate were carefully studied. High retention efficiency (100%) was achieved with the proposed IL-GO sorption nanomaterial without the need for additional chelating reagents or derivatization reagents, which is an important advantage compared with traditional preconcentration methods. A sensitivity enhancement factor of 100 and a low detection limit of 14 ng L-1 were obtained under optimal experimental conditions. The proposed method can be considered as a simple, cost-effective and efficient alternative for Hg determination in water samples like river, rain, mineral and tap water.Fil: Cruz Sotolongo, Annaly. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Martinis, Estefanía Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Wuilloud, Rodolfo German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentin
Accurate Multi-physics Numerical Analysis of Particle Preconcentration Based on Ion Concentration Polarization
This paper studies mechanism of preconcentration of charged particles in a
straight micro-channel embedded with permselective membranes, by numerically
solving coupled transport equations of ions, charged particles and solvent
fluid without any simplifying assumptions. It is demonstrated that trapping and
preconcentration of charged particles are determined by the interplay between
drag force from the electroosmotic fluid flow and the electrophoretic force
applied trough the electric field. Several insightful characteristics are
revealed, including the diverse dynamics of co-ions and counter ions,
replacement of co-ions by focused particles, lowered ion concentrations in
particle enriched zone, and enhanced electroosmotic pumping effect etc.
Conditions for particles that may be concentrated are identified in terms of
charges, sizes and electrophoretic mobilities of particles and co-ions.
Dependences of enrichment factor on cross-membrane voltage, initial particle
concentration and buffer ion concentrations are analyzed and the underlying
reasons are elaborated. Finally, post priori a condition for validity of
decoupled simulation model is given based on charges carried by focused charge
particles and that by buffer co-ions. These results provide important guidance
in the design and optimization of nanofluidic preconcentration and other
related devices.Comment: 18 pages, 11 firgure
Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores
Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection HPLC-MS analysis, without the need of pre-concentrating the melted ice, for the determination of a series of novel biomarkers in ice-core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterised by limits of detections (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOA) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies
Complex formation and enantioselectivity studies of triazole fungicide and organophosphorus pesticide enantiomers using capillary electrophoresis
Several cyclodextrin modified-micellar electrokinetic chromatography (CDMEKC) methods were developed for the successful triazole fungicides separation. In the first part, an efficient method was developed for the simultaneous enantioseparation of cyproconazole (4 stereoisomer), bromuconazole (4 stereoisomer) and diniconazole (2 stereisomer) enantiomers using CD-MEKC with a dual mixture of neutral cyclodextrins as chiral selector. The best simultaneous separation of cyproconazole, bromuconazole, and diniconazole enantiomers was achieved with a mixture of 27 mM HP-β-CD and 3 mM HP-γ-CD in 25 mM phosphate buffer (pH 3.0) containing 40 mM sodium dodecyl sulfate (SDS) and 15% iso-propanol as organic modifier. Complete separation of 10 stereoisomer of triazole fungicides were obtained in a single run with good resolution (Rs 1.74“26.31) and high peak efficiency (N > 400 000). In the second part of the study, enantioseparation of hexaconazole, penconazole, myclobutanil, and triadimefon was investigated. Simultaneous enantioseparation of penconazole, myclobutanil, and triadimefon was achieved under acidic condition (pH 3.0) using 25 mM phosphate buffer, 50 mM SDS, and 30 mM HP-γ-CD, with Rs greater than 0.9 whereas, simultaneous enantioseparation of hexaconazole, penconazole, and myclobutanil was successfully achieved under neutral condition (pH 7.0) using 25 mM phosphate buffer, 40 mM SDS, and 40 mM HP-γ-CD, with Rs greater than1.6. In order to improve detection sensitivity, on-line preconcentration technique was investigated. It was found that sweeping technique as an on-line preconcentration technique improved the detection sensitivity of the enantioseparation of cyproconazole, bromuconazole, and diniconazole by 30 to 60-fold, with good repeatabilities in the migration time, peak area and peak height were obtained with RSDs in the range of 0.08“0.32%, 0.03“ 2.44%, and 2.13“8.44% respectively. Furthermore, sweeping technique improved the detection sensitivity of the enantioseparation of hexaconazole, penconazole and myclobutanil by 62- to 67-fold. Good repeatabilities in the migration time, peak area and peak height were obtained with RSDs in the range of 2.39“3.90%, 1.96€“6.15%, and 2.80“6.64% respectively. Finally, the formation constant of diniconazole enantiomers with HP-γ-CD under neutral and acidic condition was investigated using CD-MEKC
Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection
Gold nanoparticles (AuNPs) were deposited on Glassy Carbon (GC) substrate by using three electrochemical techniques: Cyclic Voltammetry (CV), Chronoamperometry (CA) and Potentiostatic Double-Pulse (PDP). For each electrodeposition method, the resulting AuNPs-modified electrodes were characterized by CV in H2SO4 and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). CA was found to be the best electrodeposition mode for controlling the morphology and the density of AuNPs. The modified electrodes were used for low Hg(II) concentration detection using Square Wave Anodic Stripping Voltammetry (SWASV). AuNPs obtained by CA afforded the best amperometric response while involving the lowest amount of charge during the electrodeposition step (QAu(III)). This analytical response is correlated to both the smallest particle size (ca. 17 nm in diameter) and the highest particle density (332 particles μm−2), thus displaying high electrode effective surface area. In these optimal conditions, using a Hg(II) preconcentration time of 300 s, the nanosensor array exhibited a linearity range from 0.80 to 9.9 nM with a sensitivity of 1.16 μA nM−1. A detection limit of 0.40 nM (s/n = 3) was reached
Simultaneous determination of traces of PT, PD, OS, IR, RH, AG and AU by using magnetic nanoparticles solid phase extraction coupled with ICP OES
The direct analysis of these target analytes is very limited being essential sample pre-treatment techniques and the use of very sensitive instrumental techniques to carry out determinations. The inductively coupled plasma optical emission spectrometry shows a poor sensitivity because the concentration of some elements in environmental samples is below the detection limit of ICP OES. To solve this problem, preconcentration separation procedures have been proposed, minimizing the spectral and matrix interferences. Thus, enrichment is a very important issue for achievement of low detection limits [1-4].
In this study, a chelating resin 1,5 bis (di 2 pyridil) methylene thiocarbonohydrazide bonded to iron oxide magnetic nanoparticles (DPTH-MNPs) were synthesized. These magnetic nanoparticles were employed as a solid phase extraction (SPE) adsorbent for the separation and concentration of trace amounts of 7 elements (Au, Ag, Pd, Pt, Ir, Rh and Os) from environmental water samples. The main aim of this work was to develop a precise and accurate method for the simultaneous determination of the maximum possible number of elements by using this new absorbent and a multimode sample introduction system (MSIS). The MSIS acts as a system for the generation, separation and introduction of chemical vapours (CVG) and also as an introduction system for sample aerosols, in a simultaneous form, into an inductively coupled plasma-optical emission spectrometer. The on-line SPE-CVG-ICP-OES system developed was applied in the determination of the aforementioned metals in natural water samples (sea water, estuarine, lake and river water), with the least demanding and simple sample preparation procedure. The developed method was validated by analysing natural water certified reference materials (TMDA 54.4 fortified lake waters and SRM 1643e, trace elements in water; and National Institute of Standards and Technology (NIST), NIST-2557 autocatalyst). Sea water, tap water and well water samples collected from Malaga (Spain) were also analysed. The procedure has been demonstrated to be fast, easy, automatic, selective and economical, and the sensitivity was good.
The main advantage of DPTH-MNPs is its very good stability and resistance because chemisorption of chelating molecules on the surface of solid supports provides immobility, mechanical stability and insolubility. The precision (RSD), accuracy (by standard addition or recovery) and limit of detection (LOD) were used to evaluate the characteristics of the procedure. Furthermore, the proposed method was applied in the simultaneous determination of the 7 elements mentioned above with a sample throughput of about 13 h-1, thereby, reducing the time of analysis and the volume of reagents and sample required.
References [1] M. Tuzen, M. Soylak, D. Citak, H.S. Ferreira, M.G.A. Korn, M.A. Bezerra, A pre-concentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry, Journal of Haz-ardous Materials 162 (2009) 1041–1045.
[2] Y. Cui, X. Chang, Y. Zhai, X. Zhu, H. Zheng, N. Lian, ICP-AES determination of trace elements after preconcentrated with p-dimethylaminobenzaldehyde-modified nanometer SiO2 from sample solution, Microchem. J. 83 (2006) 35–41.
[3] P. Liang, B. Hu, Z. Jiang, Y. Qin, T. Peng, Nanometer-sized titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their determination by inductively coupled plasma atomic emission spectrometry, J. Anal. Atom. Spectrom. 16 (2001) 863–866.
[4] B. Feist, B. Mikula, K. Pytlakowska, B. Puzio, F. Buhl, Determination of heavy metals by ICP-OES and F-AAS after preconcentration with 2,2-bipyridyl and erythrosine, J. Hazard. Mater. 152 (2008) 1122–1129.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators
Suspended microchannel resonators (SMRs) are an innovative approach to fluid-based
microelectromechanical mass sensing that circumvents complete immersion of the sensor. By
embedding the fluidics within the device itself, vacuum-based operation of the resonator becomes
possible. This enables frequency shift-based mass detection with high quality factors, and hence
sensitivity comparable to vacuum-based micromechanical resonators. Here we present a detailed
analysis of the sensitivity of these devices, including consideration of fundamental and practical
noise limits, and the important role of binding kinetics in sensing.We demonstrate that these devices
show significant promise for protein detection. For larger, biologically-important targets such as rare
whole virions, the required analysis time to flow sufficient sample through the sensor can become
prohibitively long unless large parallel arrays of sensors or preconcentrators are employed
- …
