10,057 research outputs found
HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis
Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis
From Linear Genes to Epigenetic Inheritance of Three-dimensional Epigenomes
Fifty years ago Jacob and Monod reported their findings on the regulation of gene activity. Working on lambda bacteriophage lysogeny and the regulation of the production of an enzyme that cleaves lactose, they observed that its production was induced by the presence of lactose in the medium and came to general conclusions about gene expression that still hold true today. Thanks to decades of intense multidisciplinary research, these conclusions have been extended by several fundamental discoveries. In particular, gene regulatory circuits include the ability to propagate the memory of a specific gene regulatory state long after being established and even when the original inducer is no longer present. Furthermore, in addition to being regulated by binding of regulators such as RNAs or proteins in the vicinity of the site of transcription initiation, genes can be regulated by factor binding at incredible distances from their transcriptional start sites. Prominent among the regulatory components involved in these processes are Polycomb and Trithorax group proteins, pleiotropic gene regulators of critical importance in development, physiology and disease
Biphasic euchromatin-to-heterochromatin transition on the KSHV genome following de novo infection.
The establishment of latency is an essential step for the life-long persistent infection and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). While the KSHV genome is chromatin-free in the virions, the viral DNA in latently infected cells has a chromatin structure with activating and repressive histone modifications that promote latent gene expression but suppress lytic gene expression. Here, we report a comprehensive epigenetic study of the recruitment of chromatin regulatory factors onto the KSHV genome during the pre-latency phase of KSHV infection. This demonstrates that the KSHV genome undergoes a biphasic chromatinization following de novo infection. Initially, a transcriptionally active chromatin (euchromatin), characterized by high levels of the H3K4me3 and acetylated H3K27 (H3K27ac) activating histone marks, was deposited on the viral episome and accompanied by the transient induction of a limited number of lytic genes. Interestingly, temporary expression of the RTA protein facilitated the increase of H3K4me3 and H3K27ac occupancy on the KSHV episome during de novo infection. Between 24-72 hours post-infection, as the levels of these activating histone marks declined on the KSHV genome, the levels of the repressive H3K27me3 and H2AK119ub histone marks increased concomitantly with the decline of lytic gene expression. Importantly, this transition to heterochromatin was dependent on both Polycomb Repressive Complex 1 and 2. In contrast, upon infection of human gingiva-derived epithelial cells, the KSHV genome underwent a transcription-active euchromatinization, resulting in efficient lytic gene expression. Our data demonstrate that the KSHV genome undergoes a temporally-ordered biphasic euchromatin-to-heterochromatin transition in endothelial cells, leading to latent infection, whereas KSHV preferentially adopts a transcriptionally active euchromatin in oral epithelial cells, resulting in lytic gene expression. Our results suggest that the differential epigenetic modification of the KSHV genome in distinct cell types is a potential determining factor for latent infection versus lytic replication of KSHV
Role of enhancer of zeste homolog 2 polycomb protein and its significance in tumor progression and cell differentiation
Epigenetics is a branch of genetics that focuses on the heritable changes of DNA or associated proteins, other than DNA sequence variations, which carry information content during cell division [1,2]. These heritable changes are ascribed to chromatin, which constitutes the
ultrastructure of DNA and whose modifications affect the genetic material functionality.
Differences in chromatin structure have been associated to transcription regulation [3-5] and chromosome stability [6,7], affecting both gene’s information, expression and heritability.
Noteworthy, these epigenetic modifications are involved in both transcriptional activation and repression, indicating their widespread role as modulators of gene expression in numerous biological processes [8,9].
Chromatin is subjected to numerous modifications roughly classified in two groups: DNA and histone post-translational modifications (histone-PTMs).
DNA methylation is the most studied epigenetic modification of DNA and corresponds to the covalent addition of a methyl (CH3) group to the nucleotide cytosine within CG dinucleotides or CNG trinucleotides where N can be C, A, G or T. Usually, DNA methylation induces decreased protein-DNA binding of transcription factors and leads to the repression of gene expression [10].
DNA “methylable” sequences are not uniform across the human genome but restricted in CpG rich DNA regions termed CpG islands (CGI). CGI are localized at repetitive sequences, heavy methylated, to prevent the reactivation of endoparasitic sequences such as transposons, and at gene promoter sequences, which are normally refractory to methylation in normal somatic cells [8,11].</br
Stable variable selection for right censored data: comparison of methods
The instability in the selection of models is a major concern with data sets
containing a large number of covariates. This paper deals with variable
selection methodology in the case of high-dimensional problems where the
response variable can be right censored. We focuse on new stable variable
selection methods based on bootstrap for two methodologies: the Cox
proportional hazard model and survival trees. As far as the Cox model is
concerned, we investigate the bootstrapping applied to two variable selection
techniques: the stepwise algorithm based on the AIC criterion and the
L1-penalization of Lasso. Regarding survival trees, we review two
methodologies: the bootstrap node-level stabilization and random survival
forests. We apply these different approaches to two real data sets. We compare
the methods on the prediction error rate based on the Harrell concordance index
and the relevance of the interpretation of the corresponding selected models.
The aim is to find a compromise between a good prediction performance and ease
to interpretation for clinicians. Results suggest that in the case of a small
number of individuals, a bootstrapping adapted to L1-penalization in the Cox
model or a bootstrap node-level stabilization in survival trees give a good
alternative to the random survival forest methodology, known to give the
smallest prediction error rate but difficult to interprete by
non-statisticians. In a clinical perspective, the complementarity between the
methods based on the Cox model and those based on survival trees would permit
to built reliable models easy to interprete by the clinician.Comment: nombre de pages : 29 nombre de tableaux : 2 nombre de figures :
- …
