44,591 research outputs found

    Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a HER2 targeting antibody fragment

    Get PDF
    The rapidly increasing interest in the synthesis of antibody–drug conjugates as powerful targeted anticancer agents demonstrates the growing appreciation of the power of antibodies and antibody fragments as highly selective targeting moieties. This targeting ability is of particular interest in the area of photodynamic therapy, as the applicability of current clinical photosensitizers is limited by their relatively poor accumulation in target tissue in comparison to healthy tissue. Although synthesis of porphyrin–antibody conjugates has been previously demonstrated, existing work in this area has been hindered by the limitations of conventional antibody conjugation methods. This work describes the attachment of azide-functionalized, water-soluble porphyrins to a tratuzumab Fab fragment via a novel conjugation methodology. This method allows for the synthesis of a homogeneous product without the loss of structural stability associated with conventional methods of disulfide modification. Biological evaluation of the synthesized conjugates demonstrates excellent selectivity for a HER2 positive cell line over the control, with no dark toxicity observed in either case

    Interactions Between Spermine-Derivatized Tentacle Porphyrins And The Human Telomeric DNA G-Quadruplex

    Get PDF
    G-rich DNA sequences have the potential to fold into non-canonical G-Quadruplex (GQ) structures implicated in aging and human diseases, notably cancers. Because stabilization of GQs at telomeres and oncogene promoters may prevent cancer, there is an interest in developing small molecules that selectively target GQs. Herein, we investigate the interactions of meso-tetrakis-(4-carboxysperminephenyl)porphyrin (TCPPSpm4) and its Zn(II) derivative (ZnTCPPSpm4) with human telomeric DNA (Tel22) via UV-Vis, circular dichroism (CD), and fluorescence spectroscopies, resonance light scattering (RLS), and fluorescence resonance energy transfer (FRET) assays. UV-Vis titrations reveal binding constants of 4.7 × 10⁶ and 1.4 × 10⁷ M⁻¹ and binding stoichiometry of 2–4:1 and 10–12:1 for TCPPSpm4 and ZnTCPPSpm4, respectively. High stoichiometry is supported by the Job plot data, CD titrations, and RLS data. FRET melting indicates that TCPPSpm4 stabilizes Tel22 by 36 ± 2 °C at 7.5 eq., and that ZnTCPPSpm4 stabilizes Tel22 by 33 ± 2 °C at ~20 eq.; at least 8 eq. of ZnTCPPSpm4 are required to achieve significant stabilization of Tel22, in agreement with its high binding stoichiometry. FRET competition studies show that both porphyrins are mildly selective for human telomeric GQ vs duplex DNA. Spectroscopic studies, combined, point to end-stacking and porphyrin self-association as major binding modes. This work advances our understanding of ligand interactions with GQ DNA

    Peripherally-metallated porphyrins: meso-n1-porphyrinyl-platinum(II) complexes of 5,15-diaryl- and 5,10,15-triarylporphyrins

    Get PDF
    Attempted metathesis reactions of peripherally-metallated meso-η1-porphyrinylplatinum(II) complexes such as trans-[PtBr(NiDPP)(PPh3)2] (H2DPP = 5,15-diphenylporphyrin) with organolithium reagents fail due to competitive addition at the porphyrin ring carbon opposite to the metal substituent. This reaction can be prevented by using 5,10,15-triarylporphyrins, e.g. 5,10,15-triphenylporphyrin (H2TrPP) and 5-phenyl-10,20-bis(3’,5’-di-t-butylphenyl)porphyrin (H2DAPP) as substrates. These triarylporphyrins are readily prepared using the method of Senge and co-workers by addition of phenyllithium to the appropriate 5,15-diarylporphyrins, followed by aqueous protolysis and oxidation. They are convenient, soluble building blocks for selective substitutions and subsequent transformations at the remaining free meso carbon. The sequence of bromination, optional central metallation and oxidative addition of Pt(0) tris(phosphine) complexes generates the organoplatinum porphyrins in high overall yields. The bromo ligand on the Pt(II) centre can be substituted by alkynyl nucleophiles, including 5-ethynylNiDPP, to form the first examples of meso-η1-porphyrinylplatinum(II) complexes with a second Pt-C bond. The range of porphyrinylplatinum(II) bis(tertiary phosphine) complexes was extended to the triethylphosphine analogues, by oxidative addition of H2TrPPBr to Pt(PEt3)3, and the initially-formed cis adduct is only slowly thermally transformed to trans-[PtBr(H2TrPP)(PEt3)2] 16. The molecular structures of NiDAPP 9b, trans-[Pt(NiDPP)(C2NiDPP)(PPh3)2] 14 and 16 were determined by X-ray crystallography

    Density functional theory and DFT+U study of transition metal porphines adsorbed on Au(111) surfaces and effects of applied electric fields

    Full text link
    We apply Density Functional Theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an eV. The DFT+U technique, parameterized to B3LYP predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP, and ~ 0.1 Angstrom, changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first row transition metal ion complexes in a condensed-matter setting.Comment: 14 pages, 6 figure

    Immobilized photosensitizers for antimicrobial applications

    Get PDF
    Photodynamic antimicrobial chemotherapy (PACT) is a very promising alternative to conventional antibiotics for the efficient inactivation of pathogenic microorganisms; this is due to the fact that it is virtually impossible for resistant strains to develop due to the mode of action employed. PACT employs a photosensitizer, which preferentially associates with the microorganism, and is then activated with non-thermal visible light of appropriate wavelength(s) to generate high localized concentrations of reactive oxygen species (ROS), inactivating the microorganism. The concept of using photosensitizers immobilized on a surface for this purpose is intended to address a range of economic, ecological and public health issues. Photosensitising molecules that have been immobilized on solid support for PACT applications are described herein. Different supports have been analyzed as well as the target microorganism and the effectiveness of particular combinations of support and photosensitiser

    Metalloporphyrins inactivate caspase-3 and -8

    Get PDF
    Activation of caspases represents one of the earliest biochemical indicators for apoptotic cell death. Therefore, measurement of caspase activity is a widely used and generally accepted method to determine apoptosis in a wide range of in vivo and in vitro settings. Numerous publications characterize the role of the heme-catabolizing enzyme heme oxygenase-1 (HO-1) in regulating apoptotic processes. Different metalloporphyrins representing inducers and inhibitors of this enzyme are often used, followed by assessment of apoptotic cell death. In the present work, we found that caspase-3-like activity, as well as activity of caspase-8 measured in either Fas (CD95) ligand-treated Jurkat T-lymphocytes or by the use of recombinant caspase-3 or -8, was inhibited by different metalloporphyrins (cobalt(III) protoporphyrin IX, tin and zinc II) protoporphyrin-IX). Moreover, employing the mouse model of Fas-induced liver apoptosis these properties of porphyrins could also be demonstrated in vivo. The metalloporphyrins were shown to inhibit caspase-3-mediated PARP cleavage. Molecular modeling studies demonstrated that porphyrins can occupy the active site of caspase-3 in an energetically favorable manner and in a binding mode similar to that of known inhibitors. The data shown here introduce metalloporphyrins as direct inhibitors of caspase activity. This finding points to the need for careful employment of metalloporphyrins as modulators of HO-1

    Electrochemistry and Spectroscopy of Sulfate and Thiosulfate Complexes of Iron Porphyrins

    Get PDF
    The electrochemical and spectroscopic properties of the complex formed by the addition of thiosulfate to ferric porphyrins were examined. The NMR spectrum of the thiosulfate–ferric porphyrin complex was consistent with a high-spin ferric complex, while the EPR spectrum at liquid nitrogen temperatures indicated that the complex under these conditions was low-spin. Such behavior has been previously observed for other ferric porphyrin complexes. The visible spectra were characterized by a shift in the Soret band to higher energies, with smaller changes in the longer wavelength region. The complex was reasonably stable in DMF, but slowly reduced over several hours to FeII(TPP) and S4O6 2−. The voltammetric behavior of the thiosulfate complex in DMF consists of two waves, the first of which was irreversible. The ferric/ferrous reduction in the presence of thiosulfate was shifted negatively about 400 mV, compared to the Fe(TPP)(Cl) reduction. The visible, NMR and EPR spectra were most consistent with a Fe–S bonded ferric porphyrin–thiosulfate complex, Fe(P)(SSO3)−. The kinetics of the reduction of ferric porphyrin by thiosulfate in DMSO indicated an autocatalytic mechanism, where the first step is the formation of the catalyst. The identity of the catalyst could not be determined because it must be present at low concentrations, but it is formed from the reaction of the ferric complex with thiosulfate. Coordination of thiosulfate to the porphyrin was not necessary for the reduction to occur, and the reduction of Fe(TPP)(Cl) by thiosulfate was accelerated by the addition of sulfate. Under these conditions, sulfate had replaced thiosulfate as the axial ligand for the ferric porphyrin. In the presence of sulfate, the reduction occurred in a single kinetic pseudo-first order step. The voltammetry, spectroelectrochemistry and kinetics for the reaction of thiosulfate with ferric porphyrins were examined. A rapid reaction between ferric porphyrins and thiosulfate was observed in DMF. The reaction was complex, involving the formation of a catalytic intermediate. Window factor analysis and multivariate curve resolution were used to deconvolute the kinetic data

    Synthesis and stereochemistry of hydroporphyrins

    Get PDF
    corecore