771 research outputs found

    POMDP Model Learning for Human Robot Collaboration

    Full text link
    Recent years have seen human robot collaboration (HRC) quickly emerged as a hot research area at the intersection of control, robotics, and psychology. While most of the existing work in HRC focused on either low-level human-aware motion planning or HRC interface design, we are particularly interested in a formal design of HRC with respect to high-level complex missions, where it is of critical importance to obtain an accurate and meanwhile tractable human model. Instead of assuming the human model is given, we ask whether it is reasonable to learn human models from observed perception data, such as the gesture, eye movements, head motions of the human in concern. As our initial step, we adopt a partially observable Markov decision process (POMDP) model in this work as mounting evidences have suggested Markovian properties of human behaviors from psychology studies. In addition, POMDP provides a general modeling framework for sequential decision making where states are hidden and actions have stochastic outcomes. Distinct from the majority of POMDP model learning literature, we do not assume that the state, the transition structure or the bound of the number of states in POMDP model is given. Instead, we use a Bayesian non-parametric learning approach to decide the potential human states from data. Then we adopt an approach inspired by probably approximately correct (PAC) learning to obtain not only an estimation of the transition probability but also a confidence interval associated to the estimation. Then, the performance of applying the control policy derived from the estimated model is guaranteed to be sufficiently close to the true model. Finally, data collected from a driver-assistance test-bed are used to train the model, which illustrates the effectiveness of the proposed learning method

    Efficient Model Learning for Human-Robot Collaborative Tasks

    Get PDF
    We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot

    Closed-loop Bayesian Semantic Data Fusion for Collaborative Human-Autonomy Target Search

    Full text link
    In search applications, autonomous unmanned vehicles must be able to efficiently reacquire and localize mobile targets that can remain out of view for long periods of time in large spaces. As such, all available information sources must be actively leveraged -- including imprecise but readily available semantic observations provided by humans. To achieve this, this work develops and validates a novel collaborative human-machine sensing solution for dynamic target search. Our approach uses continuous partially observable Markov decision process (CPOMDP) planning to generate vehicle trajectories that optimally exploit imperfect detection data from onboard sensors, as well as semantic natural language observations that can be specifically requested from human sensors. The key innovation is a scalable hierarchical Gaussian mixture model formulation for efficiently solving CPOMDPs with semantic observations in continuous dynamic state spaces. The approach is demonstrated and validated with a real human-robot team engaged in dynamic indoor target search and capture scenarios on a custom testbed.Comment: Final version accepted and submitted to 2018 FUSION Conference (Cambridge, UK, July 2018
    • …
    corecore