71,931 research outputs found
ACE-inhibition prevents postischemic coronary leukocyte adhesion and leukocyte-dependent reperfusion injury
Objective: Polymorphonuclear leukocytes (PMN), retained in the microvascular bed, can contribute to postischemic myocardial reperfusion injury. Since a beneficial effect of ACE-inhibition on reperfusion injury has been reported, we investigated the impact of cilazaprilat on PMN dependent reperfusion injury in isolated guinea pig hearts. Methods: Hearts (n=5 per group) were subjected to 15 min of ischemia. Immediately thereafter, a bolus of PMN was injected into the coronary system. External heart work (EHW) and total cardiac nitric oxide release were measured. For microscopic evaluation, hearts received rhodamine 6G labelled PMN after ischemia, were arrested 5 min later and further perfused with FITC dextran (0.1%). Localization of retained PMN was assessed by fluorescence microscopy. Leukocyte activation was studied by FACS analysis of the adhesion molecule CD11b before and after coronary passage of the PMN. The ACE-inhibitor cilazaprilat (Cila, 2 μM) and the NO-synthase inhibitor nitro-L-arginine (NOLAG, 10 μM) were used to modulate nitric oxide formation of the heart. Results: Postischemic EHW recovered to 67±5% (controls) and 64±6% (Cila) of the preischemic value. Addition of PMN severely depressed recovery of EHW (39±2%) and NO release (39±6% of the preischemic value). Simultaneously, ischemia led to a substantial increase in postcapillary PMN adhesion (from 21±5 to 172±27 PMN/mm² surface) and CD11b-expression of the recovered PMN (3-fold). Cila attenuated postischemic PMN adhesion (83±52 PMN/mm²) and activation of PMN, whereas it improved recovery of work performance (64±4%) and NO release (65±4%) in the presence of PMN. Conversely, NOLAG increased PMN adhesion (284±40 PMN/mm²) and myocardial injury. We conclude that ACE-inhibition prevents leukocyte dependent reperfusion injury mainly by inhibition of postcapillary leukocyte adhesion. The effect may be mediated by NO, given the proadhesive effect of NOLAG
Differential patterns of PMN-elastase and type III procollagen peptide in knee joint effusions due to acute and chronic sports injuries
In 38 traumatic knee joint effusions the proteolytic enzyme PMN-elastase (PMN-E) and the repair marker procollagen III aminoterminal peptide (PIIINP) were determined. According to the period between trauma and first aspiration of the effusion, the patients were divided into 3 groups. Group I (17 patients; period between trauma and first aspiration not longer than 72 hours) showed high concentrations of PMN-E (up to 5400 ng/ml) and low concentrations of PIIINP (<13 U/ml). Group II (11 patients; aspiration within 4 to 14 days) had mean PMN-E and PIIINP concentrations of 125.6 ng/ml and 52.1 U/ ml, respectively. In group III (10 patients, aspiration after 14 days) mean PMN-E concentration was 123.8 ng/ml and mean PIIINP concentration was 63.4 U/ml. Graphic depiction of PMN-E and PIIINP levels in each individual sample as a function of time between trauma and fluid collection revealed highly increasing PMN-E levels during the first 24 posttraumatic hours, followed by rapidly decreasing levels within 72 hours post trauma, and no change after the 4th posttraumatic day. In contrast, PIIINP increased continuously up to the first posttraumatic week and stayed at high levels up to 90 days (end of the observation period). The differential patterns of PMN-E and PIIINP concentration in knee joint effusions may be useful in estimating the period between trauma and first treatment (aspiration of effusion) and should, therefore, be helpful in detecting degenerative lesions, which seem to be characterized by low PMN-E concomitantly with high PIIINP levels
Influence of 17 beta-estradiol, progesterone, and dexamethasone on diapedesis and viability of bovine blood polymorphonuclear leukocytes
The aim of the current study was to investigate whether polymorphonuclear leukocyte (PMN) diapedesis and viability are influenced by steroid hormones. Using an in vitro model with different types of cell layers ( bovine mammary epithelial cells and fibroblasts), we investigate whether steroid hormone treatments (17beta-estradiol, progesterone, and dexamethasone) have an influence on the diapedesis capacity and viability of PMN. In addition, we studied apoptosis of PMN in the in vitro model and evaluated the influence of different types of cell layers and steroid hormone treatments on this process. A significant decrease in the number of viable PMN in the lower compartment of the in vitro model (i.e., number of migrated PMN x viability after migration) was found after 17beta-estradiol treatment, whereas no influence was detected after progesterone or dexamethasone treatment. The effect of 17beta-estradiol was not due to a lower viability before migration as none of the treatments caused a significant effect on the viability before diapedesis. This treatment effect was not influenced by endogenous 17beta-estradiol or progesterone levels before isolation because there was no correlation between these plasma levels and PMN diapedesis capacity or viability. Furthermore, migration through epithelial cells caused a significant decrease in viability of PMN due to increased apoptosis but not necrosis
Universal Static and Dynamic Properties of the Structural Transition in Pb(Zn1/3Nb2/3)O3
The relaxors Pb(ZnNb)O (PZN) and
Pb(MgNb)O (PMN) have very similar properties based on the
dielectric response around the critical temperature (defined by the
structural transition under the application of an electric field). It has been
widely believed that these materials are quite different below with the
unit cell of PMN remaining cubic while in PZN the low temperature unit cell is
rhombohedral in shape. However, this has been clarified by recent high-energy
x-ray studies which have shown that PZN is rhombohedral only in the skin while
the shape of the unit cell in the bulk is nearly cubic. In this study we have
performed both neutron elastic and inelastic scattering to show that the
temperature dependence of both the diffuse and phonon scattering in PZN and PMN
is very similar. Both compounds show a nearly identical recovery of the soft
optic mode and a broadening of the acoustic mode below . The diffuse
scattering in PZN is suggestive of an onset at the high temperature Burns
temperature similar to that in PMN. In contrast to PMN, we observe a broadening
of the Bragg peaks in both the longitudinal and transverse directions below
. We reconcile this additional broadening, not observed in PMN, in terms
of structural inhomogeneity in PZN. Based on the strong similarities between
PMN and PZN, we suggest that both materials belong to the same universality
class and discuss the relaxor transition in terms of the three-dimensional
Heisenberg model with cubic anisotropy in a random field.Comment: 11 pages, 10 figures. Updated version after helpful referee comment
In vitro effects of nonesterified fatty acids on bovine neutrophils oxidative burst and viability
An in vitro study was conducted to examine the influence of nonesterified fatty acids (NEFA) on bovine polymorphonuclear leukocytes (PMN). Eight healthy, midlactating Holstein cows were used as blood donors. Blood PMN were isolated and incubated with a mixture of NEFA, reflecting composition of bovine plasma NEFA at concentrations that were intended to mimic those found in blood of cows undergoing high, moderate, or low lipomobilization intensity (2, 1, 0.5, 0.25, 0.125, and 0.0625 mM). Control samples were incubated in absence of NEFA. Phagocytosis and oxidative burst activities were assessed by a 2-color flow cytometric method, which was based on oxidation of intracellular dihydrorhodamine 123 to green fluorescent rhodamine 123. Oxidative burst products were generated by incubating PMN with Staphylococcus aureus labeled with propidium iodide. A flow cytometric technique was used to detect PMN viability, necrosis, and apoptosis using fluorescein isothiocyanate-labeled annexin-V and propidium iodide. Phagocytic activity was not affected by NEFA. The highest concentration of NEFA (2 mM) was associated with a dramatic increase of phagocytosis-associated oxidative burst activities with a reduction in cell viability (48.0 vs. 97.5% in control samples) and with a marked increase of necrosis (49.4 vs. 0.5% in control samples). Conversely, the mixture of NEFA did not affect the occurrence of apoptosis. Enhancement of the oxidative burst associated with the highest concentration of NEFA might explain the reduced viability and higher percentage of necrosis observed under the same conditions. This study demonstrated a substantial resistance of bovine PMN to an overload of fatty acids. However, observation that the highest concentration of NEFA regulated some PMN functions encourages the possibility of in vivo studies to assess the relationships between intensity of lipomobilization, plasma NEFA, and bovine PMN functions
THE ROLE OF THE MARKETING COMMUNICATION IN THE ENTERING OF UKRAINIAN ENTERPRISES IN THE WORLD MARKET
The dielectric, piezoelectric, and acoustic properties of PMN-0.32PT (Pb(Mg(1/3)Nb(2/3)) O(3)-PbTiO(3)) single crystals were investigated as a function of sample thickness ranging from 120 to 30 μm in order to enlighten the origin of property degradation of crystals for high frequency ultrasound applications. Electromechanical coupling factor(k(t) ), clamped and free dielectric constants decreased but sound velocity increased with decreasing crystal thickness. Particularly, repoling of the PMN-PT crystals would bring about a noteworthy enhancement in electromechanical and dielectric properties, which urges the importance of PMN-PT as a promising piezoelectric material for high frequency ultrasound transducers
Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3
The microstructure and phase transition in relaxor ferroelectric
Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain
to be one of the most puzzling issues of solid state science. In the present
work we have investigated the evolution of the phase symmetry in PMN-xPT
ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <=
x <= 0.15) by means of high-resolution synchrotron x-ray diffraction.
Structural analysis based on the experimental data reveals that the
substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in
the development of a clean rhombohedral phase at a PT-concentration as low as
5%. The results provide some new insight into the development of the
ferroelectric order in PMN-PT, which has been discussed in light of the
kinetics of polar nanoregions and the physical models of the relaxor
ferroelectrics to illustrate the structural evolution from a relaxor to a
ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde
- …
