70,596 research outputs found
Regulation of NF-κB by PML and PML-RARα
Promyelocytic Leukemia (PML) is a nuclear protein that forms sub-nuclear structures termed nuclear bodies associated with transcriptionally active genomic regions. PML is a tumour suppressor and regulator of cell differentiation. We demonstrate that PML promotes TNFα-induced transcriptional responses by promoting NF-κB activity. TNFα-treated PML−/− cells show normal IκBα degradation and NF-κB nuclear translocation but significantly reduced NF-κB DNA binding and phosphorylation of NF-κB p65. We also demonstrate that the PML retinoic acid receptor-α (PML-RARα) oncofusion protein, which causes acute promyelocytic leukemia, inhibits TNFα induced gene expression and phosphorylation of NF-κB. This study establishes PML as an important regulator of NF-κB and demonstrates that PML-RARα dysregulates NF-κB
A programme for risk assessment and minimisation of progressive multifocal leukoencephalopathy developed for vedolizumab clinical trials
Introduction Over the past decade, the potential for drug-associated progressive multifocal leukoencephalopathy (PML) has become an increasingly important consideration in certain drug development programmes, particularly those of immunomodulatory biologics. Whether the risk of PML with an investigational agent is proven (e.g. extrapolated from relevant experience, such as a class effect) or merely theoretical, the serious consequences of acquiring PML require careful risk minimisation and assessment. No single standard for such risk minimisation exists. Vedolizumab is a recently developed monoclonal antibody to α4β7 integrin. Its clinical development necessitated a dedicated PML risk minimisation assessment as part of a global preapproval regulatory requirement.
Objective The aim of this study was to describe the multiple risk minimisation elements that were incorporated in vedolizumab clinical trials in inflammatory bowel disease patients as part of the risk assessment and minimisation of PML programme for vedolizumab.
Methods A case evaluation algorithm was developed for sequential screening and diagnostic evaluation of subjects who met criteria that indicated a clinical suspicion of PML. An Independent Adjudication Committee provided an independent, unbiased opinion regarding the likelihood of PML.
Results Although no cases were detected, all suspected PML events were thoroughly reviewed and successfully adjudicated, making it unlikely that cases were missed.
Conclusion We suggest that this programme could serve as a model for pragmatic screening for PML during the clinical development of new drugs
Measuring the similarity of PML documents with RFID-based sensors
The Electronic Product Code (EPC) Network is an important part of the
Internet of Things. The Physical Mark-Up Language (PML) is to represent and
de-scribe data related to objects in EPC Network. The PML documents of each
component to exchange data in EPC Network system are XML documents based on PML
Core schema. For managing theses huge amount of PML documents of tags captured
by Radio frequency identification (RFID) readers, it is inevitable to develop
the high-performance technol-ogy, such as filtering and integrating these tag
data. So in this paper, we propose an approach for meas-uring the similarity of
PML documents based on Bayesian Network of several sensors. With respect to the
features of PML, while measuring the similarity, we firstly reduce the
redundancy data except information of EPC. On the basis of this, the Bayesian
Network model derived from the structure of the PML documents being compared is
constructed.Comment: International Journal of Ad Hoc and Ubiquitous Computin
Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy
Background: Progressive multifocal leukoencephalopathy (PML) was reported to have developed in three patients treated with natalizumab. We conducted an evaluation to determine whether PML had developed in any other treated patients.
Methods: We invited patients who had participated in clinical trials in which they received recent or long-term treatment with natalizumab for multiple sclerosis, Crohn's disease, or rheumatoid arthritis to participate. The clinical history, physical examination, brain magnetic resonance imaging (MRI), and testing of cerebrospinal fluid for JC virus DNA were used by an expert panel to evaluate patients for PML. We estimated the risk of PML in patients who completed at least a clinical examination for PML or had an MRI.
Results: Of 3417 patients who had recently received natalizumab while participating in clinical trials, 3116 (91 percent) who were exposed to a mean of 17.9 monthly doses underwent evaluation for PML. Of these, 44 patients were referred to the expert panel because of clinical findings of possible PML, abnormalities on MRI, or a high plasma viral load of JC virus. No patient had detectable JC virus DNA in the cerebrospinal fluid. PML was ruled out in 43 of the 44 patients, but it could not be ruled out in one patient who had multiple sclerosis and progression of neurologic disease because data on cerebrospinal fluid testing and follow-up MRI were not available. Only the three previously reported cases of PML were confirmed (1.0 per 1000 treated patients; 95 percent confidence interval, 0.2 to 2.8 per 1000).
Conclusions: A detailed review of possible cases of PML in patients exposed to natalizumab found no new cases and suggested a risk of PML of roughly 1 in 1000 patients treated with natalizumab for a mean of 17.9 months. The risk associated with longer treatment is not known
HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons.
Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1) latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT) transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.). Latent HSV-1 genomes display two major patterns, called "Single" and "Multiple", which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs) as viral DNA-containing PML-NBs (DCP-NBs). 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i.), infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. "Single" and "Multiple" patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the "Multiple" pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including PML-NBs and centromeres are functionally involved in the control of HSV-1 latency, and represent a key level of host/virus interaction
The role of numerical boundary procedures in the stability of perfectly matched layers
In this paper we address the temporal energy growth associated with numerical
approximations of the perfectly matched layer (PML) for Maxwell's equations in
first order form. In the literature, several studies have shown that a
numerical method which is stable in the absence of the PML can become unstable
when the PML is introduced. We demonstrate in this paper that this instability
can be directly related to numerical treatment of boundary conditions in the
PML. First, at the continuous level, we establish the stability of the constant
coefficient initial boundary value problem for the PML. To enable the
construction of stable numerical boundary procedures, we derive energy
estimates for the variable coefficient PML. Second, we develop a high order
accurate and stable numerical approximation for the PML using
summation--by--parts finite difference operators to approximate spatial
derivatives and weak enforcement of boundary conditions using penalties. By
constructing analogous discrete energy estimates we show discrete stability and
convergence of the numerical method. Numerical experiments verify the
theoretical result
JCV-specific T-cells producing IFN-gamma are differently associated with PmL occurrence in HIV patients and liver transplant recipients
Aim of this work was to investigate a possible correlation between the frequency of JCV-specific T-cells and PML occurrence in HIV-infected subjects and in liver transplant recipients. A significant decrease of JCV-specific T-cells was observed in HIV-PML subjects, highlighting a close relation between JCV-specific T-cell immune impairment and PML occurrence in HIV-subjects. Interestingly, liver-transplant recipients (LTR) showed a low frequency of JCV-specific T-cells, similar to HIV-PML subjects. Nevertheless, none of the enrolled LTR developed PML, suggesting the existence of different immunological mechanisms involved in the maintenance of a protective immune response in LT
The still under-investigated role of cognitive deficits in PML diagnosis
Background: Despite cognitive deficits frequently represent the first clinical manifestations of Progressive Multifocal Leukoencephalopathy (PML) in Natalizumab-treated MS patients, the importance of cognitive deficits in PML diagnosis is still under-investigated. The aim of the current study is to investigate the cognitive deficits at PML diagnosis in a group of Italian patients with PML. Methods: Thirty-four PML patients were included in the study. The demographic and clinical data, the lesion load and localization, and the longitudinal clinical course was compared between patients with (n = 13) and without (n = 15) cognitive deficit upon PML suspicion (the remaining six patients were asymptomatic). Clinical presentation of cognitive symptoms was described in detail. Result: After symptoms detection, the time to diagnosis resulted to be shorter for patients presenting with cognitive than for patients with non cognitive onset (p = 0.03). Within patients with cognitive onset, six patients were presenting with language and/or reading difficulties (46.15%); five patients with memory difficulties (38.4%); three patients with apraxia (23.1%); two patients with disorientation (15.3%); two patients with neglect (15.3%); one patients with object agnosia (7.7%), one patient with perseveration (7.7%) and one patient with dementia (7.7%). Frontal lesions were less frequent (p = 0.03), whereas temporal lesions were slightly more frequent (p = 0.06) in patients with cognitive deficits. The longitudinal PML course seemed to be more severe in cognitive than in non cognitive patients (F = 2.73, p = 0.03), but differences disappeared (F = 1.24, p = 0.29) when balancing for the incidence of immune reconstitution syndrome and for other treatments for PML (steroids, plasma exchange (PLEX) and other therapies (Mefloquine, Mirtazapine, Maraviroc). Conclusion: Cognitive deficits at PML onset manifest with symptoms which are absolutely rare in MS. Their appearance in MS patients should strongly suggest PML. Clinicians should be sensitive to the importance of formal neuropsychological evaluation, with particular focus on executive function, which are not easily detected without a formal assessment
- …
