6,444 research outputs found

    Scoping biological indicators of soil quality Phase II. Defra Final Contract Report SP0534

    Get PDF
    This report presents results from a field assessment of a limited suite of potential biological indicators of soil quality to investigate their suitability for national-scale soil monitoring

    Suitability of Mycorrhiza-Defective Rice and Its Progenitor for Studies on the Control of Nitrogen Loss in Paddy Fields via Arbuscular Mycorrhiza

    Get PDF
    Employing mycorrhiza-defective mutants and their progenitors does not require inoculation or elimination of the resident microbial community in the experimental study of mycorrhizal soil ecology. We aimed to examine the suitability of mycorrhiza-defective rice (non-mycorrhizal, Oryza sativa L., cv. Nipponbare) and its progenitor (mycorrhizal) to evaluate nitrogen (N) loss control from paddy fields via arbuscular mycorrhizal (AM) fungi. We grew the two rice lines in soils with the full community of AM fungi and investigated root AM colonization. In the absence of AM fungi, we estimated rice N content, soil N concentration and microbial community on the basis of phospholipid fatty acids; we also quantified N loss via NH3 volatilization, N2O emission, runoff and leaching. In the presence of AM fungi, we did not find any evidence of AM colonization for non-mycorrhizal rice while mycorrhizal rice was colonized and percentage of root colonization was 17–24%. In the absence of AM fungi, the two rice lines had similar N content, soil N concentration and microbial community. Importantly, there was no significant difference in N loss via all the four pathways between mycorrhizal and non-mycorrhizal systems. This mycorrhizal/non-mycorrhizal rice pair is suitable for further research on the role of AM fungi in the control of soil N loss in paddy fields

    Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    Get PDF
    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils.This study was financed by the UK Natural Environment Research Council (NERC) grant NE/G018278/1 and is a product of the Andes Biodiversity and Ecosystem Research Group consortium (www.andesconservation.org); Patrick Meir was also supported by ARC FT110100457

    Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition

    Get PDF
    peer-reviewedMicrobial enteropathogens can enter the environment via landspreading of animal slurries and manures. Biotic interactions with the soil microbial community can contribute to their subsequent decay. This study aimed to determine the relative impact of biotic, specifically microbial community structure, and physico-chemical properties associated with soils derived from 12 contrasting land-uses on enteropathogen survival. Phenotypic profiles of microbial communities (via phospholipid fatty acid (PLFA) profiling), and total biomass (by fumigation-extraction), in the soils were determined, as well as a range of physicochemical properties. The persistence of Salmonella Dublin, Listeria monocytogenes, and Escherichia coli was measured over 110 days within soil microcosms. Physicochemical and biotic data were used in stepwise regression analysis to determine the predominant factor related to pathogen-specific death rates. Phenotypic structure, associated with a diverse range of constituent PLFAs, was identified as the most significant factor in pathogen decay for S. Dublin, L. monocytogenes, non-toxigenic E. coli O157 but not for environmentally-persistent E. coli. This demonstrates the importance of entire community-scale interactions in pathogen suppression, and that such interactions are context-specific

    Factors influencing the nematode community during composting and nematode-based criteria for compost maturity

    Get PDF
    Pilot studies indicate that shifts in the nematode species composition, life strategies and feeding behavior during composting appear to be fairly consistent and, therefore, promising as a potential tool to assess compost maturity. However, this has been only based on a limited number of, mainly, non-replicated observations. In this study, we tested whether the nematode community succession patterns are recurrent for parallel processes and assessed the relationship between the changes in the nematode community and potential important variables (i.e., temperature, duration of composting and the microbial community). The nematode and microbial community of three simultaneously running Controlled Farm Composting and a reference Green Waste composting process were analyzed through time. Bacterial-feeding enrichment opportunists were most numerous during and directly after the heat peaks. Subsequently, the bacterial-feeding/predator community dominated and the fungal-feeding nematodes became more dominant during maturation, confirming general community patterns from previous experiments. Nematode abundances significantly fluctuated with temperature and the relative abundance of fungal-feeding nematodes increased as the duration of the curing process increased. The amount of fungal-feeding nematodes was associated significantly with both duration of composting and temperature, and the F/(F + B) ratio was only significantly associated with duration of composting. Based on these results, and additional data from an industrial reference compost process and on available literature, a Nematode-based Index of Compost Maturity (NICM) is proposed, combining four nematode-based criteria (i.e., nematode abundance, F/(F + B) ratio, the presence of more than one fungal-feeding taxon and the presence of diplogasterids). Nevertheless, the NICM should be considered as work in progress which should be tested for a wider range of composts from diverse feedstock mixtures, locations (sites) and composting techniques, to validate the use of the index and allow more reliable interpretation of particular values of this index

    Hydrothermal activity lowers trophic diversity in Antarctic sedimented hydrothermal vents

    Get PDF
    Sedimented hydrothermal vents are those in which hydrothermal fluid vents through sediment and are among the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermally active and off-vent areas of the Bransfield Strait (1050–1647 m depth). Microbial composition, biomass and fatty acid signatures varied widely between and within vent and non-vent sites and provided evidence of diverse metabolic activity. Several species showed diverse feeding strategies and occupied different trophic positions in vent and non-vent areas and stable isotope values of consumers were generally not consistent with feeding structure morphology. Niche area and the diversity of microbial fatty acids reflected trends in species diversity and was lowest at the most hydrothermally active site. Faunal utilisation of chemosynthetic activity was relatively limited but was detected at both vent and non-vent sites as evidenced by carbon and sulphur isotopic signatures, suggesting that the hydrothermal activity can affect trophodynamics over a much wider area than previously thought

    Short-term nitrous oxide emissions from pasture soil as influenced by urea level and soil nitrate

    Get PDF
    Nitrogen excreted by cattle during grazing is a significant source of atmospheric nitrous oxide (N2O). The regulation of N2O emissions is not well understood, but may vary with urine composition and soil conditions. This laboratory study was undertaken to describe short-term effects on N2O emissions and soil conditions, including microbial dynamics, of urea amendment at two different rates (22 and 43 g N m-2). The lower urea concentration was also combined with an elevated soil NO3- concentration. Urea solutions labelled with 25 atom% 15N were added to the surface of repacked pasture soil cores and incubated for 1, 3, 6 or 9 days under constant conditions (60% WFPS, 14°C). Soil inorganic N (NH4+, NO2- and NO3-), pH, electrical conductivity and dissolved organic C were quantified. Microbial dynamics were followed by measurements of CO2 evolution, by analyses of membrane lipid (PLFA) composition, and by measurement of potential ammonium oxidation and denitrifying enzyme activity. The total recovery of 15N averaged 84%. Conversion of urea-N to NO3- was evident, but nitrification was delayed at the highest urea concentration and was accompanied by an accumulation of NO2-. Nitrous oxide emissions were also delayed at the highest urea amendment level, but accelerated towards the end of the study. The pH interacted with NH4+ to produce inhibitory concentrations of NH3(aq) at the highest urea concentration, and there was evidence for transient negative effects of urea amendment on both nitrifying and denitrifying bacteria in this treatment. However, PLFA dynamics indicated that initial inhibitory effects were replaced by increased microbial activity and net growth. It is concluded that urea-N level has qualitative, as well as quantitative effects on soil N transformations in urine patches

    Extractable nitrogen and microbial community structure respond to grassland restoration regardless of historical context and soil composition.

    Get PDF
    Grasslands have a long history of invasion by exotic annuals, which may alter microbial communities and nutrient cycling through changes in litter quality and biomass turnover rates. We compared plant community composition, soil chemical and microbial community composition, potential soil respiration and nitrogen (N) turnover rates between invaded and restored plots in inland and coastal grasslands. Restoration increased microbial biomass and fungal : bacterial (F : B) ratios, but sampling season had a greater influence on the F : B ratio than did restoration. Microbial community composition assessed by phospholipid fatty acid was altered by restoration, but also varied by season and by site. Total soil carbon (C) and N and potential soil respiration did not differ between treatments, but N mineralization decreased while extractable nitrate and nitrification and N immobilization rate increased in restored compared with unrestored sites. The differences in soil chemistry and microbial community composition between unrestored and restored sites indicate that these soils are responsive, and therefore not resistant to feedbacks caused by changes in vegetation type. The resilience, or recovery, of these soils is difficult to assess in the absence of uninvaded control grasslands. However, the rapid changes in microbial and N cycling characteristics following removal of invasives in both grassland sites suggest that the soils are resilient to invasion. The lack of change in total C and N pools may provide a buffer that promotes resilience of labile pools and microbial community structure
    corecore