24,379 research outputs found

    Minimal Triangulations of Manifolds

    Full text link
    In this survey article, we are interested on minimal triangulations of closed pl manifolds. We present a brief survey on the works done in last 25 years on the following: (i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers nn and dd, construction of nn-vertex triangulations of different dd-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices. In Section 1, we have given all the definitions which are required for the remaining part of this article. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3, we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there.Comment: Survey article, 29 page

    Lower bounds for regular genus and gem-complexity of PL 4-manifolds

    Get PDF
    Within crystallization theory, two interesting PL invariants for dd-manifolds have been introduced and studied, namely {\it gem-complexity} and {\it regular genus}. In the present paper we prove that, for any closed connected PL 44-manifold MM, its gem-complexity k(M)\mathit{k}(M) and its regular genus G(M) \mathcal G(M) satisfy: k(M)  3χ(M)+10m6   and   G(M)  2χ(M)+5m4,\mathit{k}(M) \ \geq \ 3 \chi (M) + 10m -6 \ \ \ \text{and} \ \ \ \mathcal G(M) \ \geq \ 2 \chi (M) + 5m -4, where rk(π1(M))=m.rk(\pi_1(M))=m. These lower bounds enable to strictly improve previously known estimations for regular genus and gem-complexity of product 4-manifolds. Moreover, the class of {\it semi-simple crystallizations} is introduced, so that the represented PL 4-manifolds attain the above lower bounds. The additivity of both gem-complexity and regular genus with respect to connected sum is also proved for such a class of PL 4-manifolds, which comprehends all ones of "standard type", involved in existing crystallization catalogues, and their connected sums.Comment: 17 pages, 3 figures. To appear in Forum Mathematicu

    PL 4-manifolds admitting simple crystallizations: framed links and regular genus

    Get PDF
    Simple crystallizations are edge-coloured graphs representing PL 4-manifolds with the property that the 1-skeleton of the associated triangulation equals the 1-skeleton of a 4-simplex. In the present paper, we prove that any (simply-connected) PL 44-manifold MM admitting a simple crystallization admits a special handlebody decomposition, too; equivalently, MM may be represented by a framed link yielding S3\mathbb S^3, with exactly β2(M)\beta_2(M) components (β2(M)\beta_2(M) being the second Betti number of MM). As a consequence, the regular genus of MM is proved to be the double of β2(M)\beta_2(M). Moreover, the characterization of any such PL 44-manifold by k(M)=3β2(M)k(M)= 3 \beta_2(M), where k(M)k(M) is the gem-complexity of MM (i.e. the non-negative number p1p-1, 2p2p being the minimum order of a crystallization of MM) implies that both PL invariants gem-complexity and regular genus turn out to be additive within the class of all PL 44-manifolds admitting simple crystallizations (in particular: within the class of all "standard" simply-connected PL 4-manifolds).Comment: 14 pages, no figures; this is a new version of the former paper "A characterization of PL 4-manifolds admitting simple crystallizations

    Cataloguing PL 4-manifolds by gem-complexity

    Get PDF
    We describe an algorithm to subdivide automatically a given set of PL n-manifolds (via coloured triangulations or, equivalently, via crystallizations) into classes whose elements are PL-homeomorphic. The algorithm, implemented in the case n=4, succeeds to solve completely the PL-homeomorphism problem among the catalogue of all closed connected PL 4-manifolds up to gem-complexity 8 (i.e., which admit a coloured triangulation with at most 18 4-simplices). Possible interactions with the (not completely known) relationship among different classification in TOP and DIFF=PL categories are also investigated. As a first consequence of the above PL classification, the non-existence of exotic PL 4-manifolds up to gem-complexity 8 is proved. Further applications of the tool are described, related to possible PL-recognition of different triangulations of the K3-surface.Comment: 25 pages, 5 figures. Improvements suggested by the refere
    corecore