103,907 research outputs found

    Photolytic Hazes in the Atmosphere of 51 Eri b

    Get PDF
    We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter, 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2_2S into elemental sulfur, here treated as S8_8. In the cooler models, S8_8 is predicted to condense in optically thick clouds of solid sulfur particles, whilst in the warmer models S8_8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we have discussed is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.Comment: 24 pages including 11 figures and a tabl

    High-Resolution Optical Studies on C-Phycocyanin via Photochemical Hole Burning

    Get PDF
    We have shown that both the native C-phycocyanin and its corresponding free biline chromophore undergo reversible, low-temperature photochemistry. We attribute this photochemistry to reversible proton-transfer processes and utilize the observed photoreaction for photochemical hole burning (PHB). Using narrow-band PHB experiments, we have been able to perform high-resolution optical studies and show that the protein-chromophore assembly forms a very rigid structure. The results lead to the conclusion that the light-induced proton transfer occurs most probably in the triplet state

    A program of research in environmental modeling

    Get PDF
    A theoretical framework for the interpretation of satellite measurements of stratospheric temperature and trace gases is provided. This problem is quite complicated since the distributions of trace gases are dependent on dynamics and photochemistry. Therefore, the problem was attacked with models employing varying degrees of photochemical and dynamical complexity. The relationship between dynamics and trace gas transport and wave transience, dissipation and critical levels and the net (permanent) transport of trace gases, the role of photochemistry in trace gas transport, photochemistry and dynamics and altering the mean-zonal distribution of stratospheric ozone, and approximations to simplify the interpretation of observations and General Circulation Models are discussed

    MANAGEMENT DECISION MAKING IN MARKETING

    Get PDF
    Miniaturized microreactors enable photochemistry with laser irradiation in flow mode to convert azidobiphenyl into carbazole with high efficiency

    PHOTOCHEMISTRY OF PHYCOBILIPROTEINS

    Get PDF
    Native PEC from the cyanobacterium, Mastigocladus laminosus, and its isolated α-subunit show photoreversibly photochromic reactions with difference-maxima around 502 and 570 nm in the spectral region of the α-84 phycoviolobilin chromophore. (b) Native PEC and its β-subunit show little if any reversible photochemistry in the 600–620 nm region, where the phycocyanobilin chromophores on the β-subunit absorb maximally, (c) Reversible photochemistry is retained in ureadenatured PEC at pH = 7.0 or pH ≤ 3. The difference maxima are shifted to 510 and 600 nm, and the amplitudes are decreased. An irreversible absorbance increase occurs around 670 nm (pH ≤ 3). (d) The amplitude of the reversible photoreaction difference spectrum is maximum in the presence of 4–5 M urea or 1 M KSCN, conditions known to dissociate phycobiliprotein aggregates into monomers. At the same time, the phycocyanobilin chromophore(s) are bleached irreversibly, (e) The amplitude becomes very small in high aggregates, e.g. in phycobilisomes. (f) In a reciprocal manner, the phototransformation of native PEC leads to a reversible shift of its aggregation equilibrium between trimer and monomer. The latter is favored by orange, the former by green light, (g) It is concluded that the phycoviolobilin chromophore of PEC is responsible for reversible photochemistry in PEC, and that there is not only an influence of aggregation state on photochemistry, but also vice versa an effect of the status of the chromophore on aggregation state. This could constitute a primary signal in the putative function as sensory pigment, either directly, or indirectly via the release of other polypeptides, via photodynamic effects, or the like

    The chemistry of comets An annotated bibliography

    Get PDF
    Annotated bibliography on chemistry of comets - free radicals, photochemistry, photolysis, and spectral analysi

    The Atmospheric Chemistry of GJ 1214b: Photochemistry and Clouds

    Full text link
    Recent observations of the transiting super-Earth GJ 1214b reveal that its atmosphere may be hydrogen-rich or water-rich in nature, with clouds or hazes potentially affecting its transmission spectrum in the optical and very-near-IR. Here we further examine the possibility that GJ 1214b does indeed possess a hydrogen-dominated atmosphere, which is the hypothesis that is favored by models of the bulk composition of the planet. We study the effects of non-equilibrium chemistry (photochemistry, thermal chemistry, and mixing) on the planet's transmission spectrum. We furthermore examine the possibility that clouds could play a significant role in attenuating GJ 1214b's transmission spectrum at short wavelengths. We find that non-equilibrium chemistry can have a large effect on the overall chemical composition of GJ 1214b's atmosphere, however these changes mostly take place above the height in the atmosphere that is probed by transmission spectroscopy. The effects of non-equilibrium chemistry on GJ 1214b's transmission spectrum are therefore minimal, with the largest effects taking place if the planet's atmosphere has super-solar metallicity and a low rate of vertical mixing. Interestingly, we find that the best fit to the observations of GJ 1214b's atmosphere in transmission occur if the planet's atmosphere is deficient in CH4, and possesses a cloud layer at a pressure of ~200 mbar. This is consistent with a picture of efficient methane photolysis, accompanied by formation of organic haze that obscures the lower atmosphere of GJ 1214b at optical wavelengths. However, for methane to be absent from GJ 1214b's transmission spectrum, UV photolysis of this molecule must be efficient at pressures of greater than ~1 mbar, whereas we find that methane only photolyzes to pressures less than 0.1 mbar, even under the most optimistic assumptions. (Abridged)Comment: Accepted to ApJ; 32 pages, 8 figures, 1 tabl

    Photochemistry of the PAH pyrene in water ice: the case for ion-mediated solid-state astrochemistry

    Full text link
    Context. Icy dust grains play an important role in the formation of complex inter- and circumstellar molecules. Observational studies show that polycyclic aromatic hydrocarbons (PAHs) are abundantly present in the ISM in the gas phase. It is likely that these non-volatile species freeze out onto dust grains as well and participate in the astrochemical solid-state network, but experimental PAH ice studies are largely lacking. Methods. Near UV/VIS spectroscopy is used to track the in situ VUV driven photochemistry of pyrene containing ices at temperatures ranging from 10 to 125 K. Results. The main photoproducts of VUV photolyzed pyrene ices are spectroscopically identified and their band positions are listed for two host ices, \water and CO. Pyrene ionisation is found to be most efficient in \water ices at low temperatures. The reaction products, triplet pyrene and the 1-hydro-1-pyrenyl radical are most efficiently formed in higher temperature water ices and in low temperature CO ice. Formation routes and band strength information of the identified species are discussed. Additionally, the oscillator strengths of Py, Py^+ and PyH are derived and a quantitative kinetic analysis is performed by fitting a chemical reaction network to the experimental data. Conclusions. Pyrene is efficiently ionised in water ice at temperatures below 50 K. Hydrogenation reactions dominate the chemistry in low temperature CO ice with trace amounts of water. The results are put in an astrophysical context by determining the importance of PAH ionisation in a molecular cloud. The photoprocessing of a sample PAH in ice described in this manuscript indicates that PAH photoprocessing in the solid state should also be taken into account in astrochemical models.Comment: 11 pages, 8 figures, accepted for publication in A&

    PHYCOERYTHROCYANINS FROM Westiellopsis prolifica AND Nostoc rivulare: CHARACTERIZATION OF THE PHYCOVIOLOBILIN CHROMOPHORE IN BOTH STATES

    Get PDF
    Phycoerythrocyanin or fractions enriched in it have been isolated from the filamentous cyanobacteria, Westiellopsis prolifica ARM 365 and Nostoc rivulare ARM 212. Both show the photoreversible photochromism (difference maxima at 503 and 570 nm) characteristic of this pigment, which is related to the phycoviolobilin chromophore on the α-subunit. Native phycoerythrocyanin and its β-subunit show little if any reversible photochemistry in the 600–620 nm region, where the phycocyanobilin chromophores absorb maximally. Instead the phycocyanobilin chromophores are bleached irreversibly. At the same time, the data show that reversible photochemistry is a useful analytical tool to detect phycoerythrocyanin in cyanobacterial extracts. Fluorescence measurements indicate that: (i) the 510 nm absorbing isomer of the violobilin chromophore has only little fluorescence; and (ii) the energy transfer from the violobilin chromophores to the cyanin chromophores is efficient only in the 570 nm form

    Investigation of galactic and planetary radio astronomy Third semiannual status report, Jan. - Jun. 1965

    Get PDF
    Galactic and planetary radio astronomy - sounding rocket launch, orbiting telescope, carbon-oxygen complex photochemistry, Mars ionosphere, topside electron density, and nonrigid bodie
    corecore