19,737 research outputs found

    Insulin Action on Polyunsaturated Phosphatidic Acid Formation in Rat Brain: An “In Vitro” Model with Synaptic Endings from Cerebral Cortex and Hippocampus

    Get PDF
    The highly efficient formation of phosphatidic acid from exogenous 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) in rat brain synaptic nerve endings (synaptosomes) from cerebral cortex and hippocampus is reported. Phosphatidic acid synthesized from SAG or 1,2-dipalmitoylsn-glycerol (DPG) was 17.5 or 2.5 times higher, respectively, than from endogenous synaptosomal diacylglycerides. Insulin increased diacylglycerol kinase (DAGK) action on endogenous substrate in synaptic terminals from hippocampus and cerebral cortex by 199 and 97%, respectively. Insulin preferentially increased SAG phosphorylation from hippocampal membranes. In CC synaptosomes insulin increased phosphatidic acid (PA) synthesis from SAG by 100% with respect to controls. Genistein (a tyrosine kinase inhibitor) inhibited this stimulatory insulin effect. Okadaic acid or cyclosporine, used as Ser/Threo protein phosphatase inhibitors, failed to increase insulin effect on PA formation. GTPcS and particularly NaF were potent stimulators of PA formation from polyunsaturated diacylglycerol but failed to increase this phosphorylation when added after 5 min of insulin exposure. GTPcS and NaF increased phosphatidylinositol 4,5 bisphosphate (PIP2) labeling with respect to controls when SAG was present. On the contrary, they decreased polyphosphoinositide labeling with respect to controls in the presence of DPG. Our results indicate that a DAGK type 3 (DAGKe) which preferentially, but not selectively, utilizes 1-acyl-2-arachidonoyl-sn-glycerol and which could be associated with polyphosphoinositide resynthesis, participates in synaptic insulin signaling. GTPcS and NaF appear to be G protein activators related to insulin and the insulin receptor, both affecting the signaling mechanism that augments phosphatidic acid formation.Fil: Zulian, Sandra Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Ilincheta, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Giusto, Norma Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentin

    Characterization of key triacylglycerol biosynthesis processes in rhodococci.

    Get PDF
    Oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcripts were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δatf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production

    Animal cell cytokinesis: the role of dynamic changes in the plasma membrane proteome and lipidome

    Get PDF
    In animal cells, cytokinesis is characterised by the formation of the mitotic spindle that signals the assembly of an actomyosin ring between the spindle poles. Contraction of this ring drives ingression of the cleavage furrow, and culminates in the formation of a thin intercellular bridge between the daughter cells. At the centre of this bridge is the midbody, which is thought both to provide a site of attachment for the plasma membrane furrow and act as foci for the spatial and temporal control mechanisms that drive abscission. This review will focus upon recent studies that offer new insight into these events, in particular studies that elaborate on the mechanism of attachment between the furrow plasma membrane and the underlying cytoskeleton, and how dynamic changes in membrane composition might underpin key aspects of cytokinesis

    Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis

    Get PDF
    This work was supported by a Merit Scholarship from the Islamic Development Bank (to M.M.U.T.), The Agency for Science, Technology and Research, Singapore (A*STAR) (M.F.M.S), the Medical Research Council (MRC) [NIRG GO800203 and Research Grant MR/L002620/1 (to J.J.R.), Program GrantG09000554 (to S.O.R)], The Wellcome Trust [078986/Z/06/Z (to S.O.R.)], the MRC Centre for Obesity and Related Metabolic Disorders (MRC-CORD) [GO600717] and the NIHR Comprehensive Biomedical Research Centre [CG50826].Peer reviewedPublisher PD

    Comparative lipid profiling dataset of the inflammation-induced optic nerve regeneration.

    Get PDF
    In adult mammals, retinal ganglion cells (RGCs) fail to regenerate following damage. As a result, RGCs die after acute injury and in progressive degenerative diseases such as glaucoma; this can lead to permanent vision loss and, eventually, blindness. Lipids are crucial for the development and maintenance of cell membranes, myelin sheaths, and cellular signaling pathways, however, little is known about their role in axon injury and repair. Studies examining changes to the lipidome during optic nerve (ON) regeneration could greatly inform treatment strategies, yet these are largely lacking. Experimental animal models of ON regeneration have facilitated the exploration of the molecular determinants that affect RGC axon regeneration. Here, we analyzed lipid profiles of the ON and retina in an ON crush rat model using liquid chromatography-mass spectrometry. Furthermore, we investigated lipidome changes after ON crush followed by intravitreal treatment with Zymosan, a yeast cell wall derivative known to enhance RGC regeneration. This data is available at the NIH Common Fund's Metabolomics Data Repository and Coordinating Center (supported by NIH grant, U01-DK097430) website, the Metabolomics Workbench, http://www.metabolomicsworkbench.org, where it has been assigned Project ID: PR000661. The data can be accessed directly via it's Project DOI: doi: 10.21,228/M87D53

    The many origins of charge inversion in electrolyte solutions: effects of discrete interfacial charges

    Full text link
    We show that charge inversion, i.e. interfacial charges attracting counterions in excess of their own nominal charge, is a general effect that takes place in most charged systems next to aqueous solutions with multivalent ions and identify three different electrostatic origins for this effect 1) counterion-counterion correlations, 2) correlations between counterions and interfacial charges and 3) complexation. We briefly describe the first two regimes and provide a detailed characterization of the complexation regime from united atom molecular dynamics simulation of a phospholipid domain in contact with an aqueous solution. We examine the expected conditions where each regime should apply and describe a representative experimental example to illustrate each case. We point out that our results provide a characterization of ionic distributions irrespectively of whether charge inversion takes place and show that processes such as proton release and transfer are also linked to ionic correlations. We conclude with a discussion of further experimental and theoretical implications.Comment: 22 pages, 7 figure

    Identification of caspase 3 motifs and critical aspartate residues in human Phospholipase D1b and Phopsholipase D2a

    Get PDF
    Stimulation of mammalian cells frequently initiates phospholipase D-catalysed hydrolysis of phosphatidylcholine in the plasma membrane to yield phosphatidic acid (PA) a novel lipid messenger. PA plays a regulatory role in important cellular processes such as secretion, cellular shape change and movement. A number of studies have highlighted that PLD-based signalling also plays a pro-mitogenic and pro-survival role in cells and therefore anti-apoptotic. We show that human PLD1b and PLD2a contain functional caspase-3 cleavage sites and identify the critical aspartate residues within PLD1b that affect its activation by phorbol esters and attenuate phosphatidylcholine hydrolysis during apoptosis

    U.S. Biodiesel Development: New Markets for Conventional and Genetically Modified Agricultural Products

    Get PDF
    With environmental and energy source concerns on the rise, using agricultural fats and oils as fuel in diesel engines has captured increasing attention. Substituting petroleum diesel with biodiesel may reduce air emissions, increase the domestic supply of fuel, and create new markets for farmers. U.S. agricultural fats and oils could support a large amount of biodiesel, but high production costs and competing uses for biodiesel feedstocks will likely prevent mass adoption of biodiesel fuel. Higher-priced niche markets could develop for biodiesels as a result of environmental regulations. Biodiesel has many environmental advantages relative to petroleum diesel, such as lower CO, CO2, SOx, and particulate matter emissions. Enhancing fuel properties by genetically modifiying oil crops could improve NOx emissions, cold flow, and oxidative stability, which have been identified as potential problems for biodiesel. Research activities need to be directed toward cost reduction, improving fuel properties, and analyzing the economic effects of biodiesel development on U.S. agriculture.biodiesel, biodiesel blends, fatty acid esters, soybean, oil crops, animal fats, plant genetics, diesel engines, alternative fuels, Resource /Energy Economics and Policy,

    Lipids at the crossroad of α-synuclein function and dysfunction: Biological and pathological implications

    Get PDF
    Since its discovery, the study of the biological role ofα-synuclein and its pathologicalimplications has been the subject of increasing interest. The propensity to adoptdifferent conformational states governing its aggregation and fibrillation makes thissmall 14-kDa cytosolic protein one of the main etiologic factors associated withdegenerative disorders known as synucleinopathies. The structure, function, and toxicityofα-synuclein and the possibility of different therapeutic approaches to target theprotein have been extensively investigated and reviewed. One intriguing characteristic ofα-synuclein is the different ways in which it interacts with lipids. Though in-depth studieshave been carried out in this field, the information they have produced is puzzling andthe precise role of lipids inα-synuclein biology and pathology andvice versais still largelyunknown. Here we provide an overview and discussion of the main findings relating toα-synuclein/lipid interaction and its involvement in the modulation of lipid metabolismand signaling.Fil: Alza, Natalia Paola. Universidad Nacional del Sur. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Iglesias González, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Conde, Melisa Ailén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Uranga, Romina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Salvador, Gabriela Alejandra. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentin
    corecore