19,680 research outputs found

    Geometric pi Josephson junction: Current-phase relations and critical current

    Full text link
    Josephson junctions with an intrinsic phase shift of pi, so-called pi Josephson junctions, can be realized by a weak link of a d-wave superconductor with an appropriate boundary geometry. A model for the pairing potential of an according weak link is introduced which allows for the calculation of the influence of geometric parameters and temperature. From this model, current-phase relations and the critical current of the device are derived. The range of validity of the model is determined by comparison with selfconsistent solutions.Comment: 4 pages, 5 figures. IEEE Trans. Appl. Supercond., accepte

    Current-phase relations of few-mode InAs nanowire Josephson junctions

    Full text link
    Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, II, versus the phase, ϕ\phi, across the junction is called the current-phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. We measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunable junction, we found that the CPR varied with gate voltage: Near the onset of supercurrent, we observed behavior consistent with resonant tunneling through a single, highly transmitting mode. The gate dependence is consistent with modeled subband structure that includes an effective tunneling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals

    Josephson effect in a weak link between borocarbides

    Get PDF
    A stationary Josephson effect is analyzed theoretically for a weak link between borocarbide superconductors. It is shown that different models of the order parameter result in qualitatively different current-phase relations

    Superconductivity in zirconium-rhodium alloys

    Get PDF
    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition

    Magnetic interference patterns in superconducting junctions: Effects of anharmonic current-phase relations

    Full text link
    A microscopic theory of the magnetic-field modulation of critical currents is developed for plane Josephson junctions with anharmonic current-phase relations. The results obtained allow examining temperature-dependent deviations of the modulation from the conventional interference pattern. For tunneling through localized states in symmetric short junctions with a pronounced anharmonic behavior, the deviations are obtained and shown to depend on distribution of channel transparencies. For constant transparency the deviations vanish not only near Tc, but also at T=0. If Dorokhov bimodal distribution for transparency eigenvalues holds, the averaged deviation increases with decreasing temperature and takes its maximum at T=0.Comment: 6 pages, 6 figure

    Demonstration of 3-port grating phase relations

    Full text link
    We experimentally demonstrate the phase relations of 3-port gratings by investigating 3-port coupled Fabry-Perot cavities. Two different gratings which have the same 1st order diffraction efficiency but differ substantially in their 2nd order diffraction efficiency have been designed and manufactured. Using the gratings as couplers to Fabry-Perot cavities we could validate the results of an earlier theoretical description of the phases at a three port grating

    Dark resonances in the field of frequency shifted feedback laser radiation

    Full text link
    We present a theory of dark resonances in a fluorescence of a three-level atom gas interacting with a polychromatic field of a frequency shifted feedback (FSF) laser. We show that conditions for the resonance observation are optimal when the phase relations between the laser spectral components provide generation of a light pulses train. We study analytically the field broadening and the light shift of the resonances.Comment: 18 pages, 8 figure

    Period-colour and amplitude-colour relations in classical Cepheid variables IV: The multi-phase relations

    Full text link
    The superb phase resolution and quality of the OGLE data on LMC and SMC Cepheids, together with existing data on Galactic Cepheids, are combined to study the period-colour (PC) and amplitude-colour (AC) relations as a function of pulsation phase. Our results confirm earlier work that the LMC PC relation (at mean light) is more consistent with two lines of differing slopes, separated at a period of 10 days. However, our multi-phase PC relations reveal much new structure which can potentially increase our understanding of Cepheid variables. These multi-phase PC relations provide insight into why the Galactic PC relation is linear but the LMC PC relation is non-linear. This is because the LMC PC relation is shallower for short (log P < 1) and steeper for long (log P > 1) period Cepheids than the corresponding Galactic PC relation. Both of the short and long period Cepheids in all three galaxies exhibit the steepest and shallowest slopes at phases around 0.75-0.85, respectively. A consequence is that the PC relation at phase ~0.8 is highly non-linear. Further, the Galactic and LMC Cepheids with log P > 1 display a flat slope in the PC plane at phases close to the maximum light. When the LMC period-luminosity (PL) relation is studied as a function of phase, we confirm that it changes with the PC relation. The LMC PL relation in V- and I-band near the phase of 0.8 provides compelling evidence that this relation is also consistent with two lines of differing slopes joined at a period close to 10 days.Comment: 12 pages, 1 table and 13 figures, MNRAS accepte
    corecore