13,911 research outputs found
POOL File Catalog, Collection and Metadata Components
The POOL project is the common persistency framework for the LHC experiments
to store petabytes of experiment data and metadata in a distributed and grid
enabled way. POOL is a hybrid event store consisting of a data streaming layer
and a relational layer. This paper describes the design of file catalog,
collection and metadata components which are not part of the data streaming
layer of POOL and outlines how POOL aims to provide transparent and efficient
data access for a wide range of environments and use cases - ranging from a
large production site down to a single disconnected laptops. The file catalog
is the central POOL component translating logical data references to physical
data files in a grid environment. POOL collections with their associated
metadata provide an abstract way of accessing experiment data via their logical
grouping into sets of related data objects.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, 1 eps figure, PSN MOKT00
Optimal Watermark Embedding and Detection Strategies Under Limited Detection Resources
An information-theoretic approach is proposed to watermark embedding and
detection under limited detector resources. First, we consider the attack-free
scenario under which asymptotically optimal decision regions in the
Neyman-Pearson sense are proposed, along with the optimal embedding rule.
Later, we explore the case of zero-mean i.i.d. Gaussian covertext distribution
with unknown variance under the attack-free scenario. For this case, we propose
a lower bound on the exponential decay rate of the false-negative probability
and prove that the optimal embedding and detecting strategy is superior to the
customary linear, additive embedding strategy in the exponential sense.
Finally, these results are extended to the case of memoryless attacks and
general worst case attacks. Optimal decision regions and embedding rules are
offered, and the worst attack channel is identified.Comment: 36 pages, 5 figures. Revised version. Submitted to IEEE Transactions
on Information Theor
Microscopic Coexistence of Antiferromagnetic and Spin-Glass States
The disordered antiferromagnet \pfn (\pfns) is investigated in a wide
temperature range by combining M\"ossbauer spectroscopy and neutron diffraction
experiments. It is demonstrated that the magnetic ground state is a {\it
microscopic} coexistence of antiferromagnetic and a spin-glass orders. This
speromagnet-like phase features frozen-in short-range fluctuations of the
Fe magnetic moments that are transverse to the long-range ordered
antiferromagnetic spin component
- …
