121,652 research outputs found

    Material dependence of Casimir forces: gradient expansion beyond proximity

    Get PDF
    A widely used method for estimating Casimir interactions [H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)] between gently curved material surfaces at short distances is the proximity force approximation (PFA). While this approximation is asymptotically exact at vanishing separations, quantifying corrections to PFA has been notoriously difficult. Here we use a derivative expansion to compute the leading curvature correction to PFA for metals (gold) and insulators (SiO2_2) at room temperature. We derive an explicit expression for the amplitude θ^1\hat\theta_1 of the PFA correction to the force gradient for axially symmetric surfaces. In the non-retarded limit, the corrections to the Casimir free energy are found to scale logarithmically with distance. For gold, θ^1\hat\theta_1 has an unusually large temperature dependence.Comment: 4 pages, 2 figure

    Possibility to measure thermal effects in the Casimir force

    Full text link
    We analyze the possibility to measure small thermal effects in the Casimir force between metal test bodies in configurations of a sphere above a plate and two parallel plates. For sphere-plate geometry used in many experiments we investigate the applicability of the proximity force approximation (PFA) to calculate thermal effects in the Casimir force and its gradient. It is shown that for real metals the two formulations of the PFA used in the literature lead to relative differences in the obtained results being less than a small parameter equal to the ratio of separation distance to sphere radius. For ideal metals the PFA results for the thermal correction are obtained and compared with available exact results. It is emphasized that in the experimental region in the zeroth order of the small parameter mentioned above the thermal Casimir force and its gradient calculated using the PFA (and thermal corrections in their own right) coincide with respective exact results. For real metals available exact results are outside the application region of the PFA. However, the exact results are shown to converge to the PFA results when the small parameter goes down to the experimental values. We arrive at the conclusion that large thermal effects predicted by the Drude model approach, if existing at all, could be measured in both static and dynamic experiments in sphere-plate and plate-plate configurations. As to the small thermal effects predicted by the plasma model approach, the static experiment in the configuration of two parallel plates is found to be the best for its observation.Comment: 35 pages, 9 figures; Phys. Rev. A, to appea

    Casimir effect for curved geometries: PFA validity limits

    Full text link
    We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using worldline numerics, we quantitatively determine the validity bounds of the proximity force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R > 0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA.Comment: 4 pages, 4 figure

    The proximity force approximation for the Casimir energy as a derivative expansion

    Get PDF
    The proximity force approximation (PFA) has been widely used as a tool to evaluate the Casimir force between smooth objects at small distances. In spite of being intuitively easy to grasp, it is generally believed to be an uncontrolled approximation. Indeed, its validity has only been tested in particular examples, by confronting its predictions with the next to leading order (NTLO) correction extracted from numerical or analytical solutions obtained without using the PFA. In this article we show that the PFA and its NTLO correction may be derived within a single framework, as the first two terms in a derivative expansion. To that effect, we consider the Casimir energy for a vacuum scalar field with Dirichlet conditions on a smooth curved surface described by a function ψ\psi in front of a plane. By regarding the Casimir energy as a functional of ψ\psi, we show that the PFA is the leading term in a derivative expansion of this functional. We also obtain the general form of corresponding NTLO correction, which involves two derivatives of ψ\psi. We show, by evaluating this correction term for particular geometries, that it properly reproduces the known corrections to PFA obtained from exact evaluations of the energy.Comment: Minor changes. Version to appear in Phys. Rev.

    Interfacial chemical oxidative synthesis of multifunctional polyfluoranthene.

    Get PDF
    A novel polyfluoranthene (PFA) exhibiting strong visual fluorescence emission, a highly amplified quenching effect, and widely controllable electrical conductivity is synthesized by the direct cationic oxidative polymerization of fluoranthene in a dynamic interface between n-hexane and nitromethane containing fluoranthene and FeCl3, respectively. A full characterization of the molecular structure signifies that the PFAs have a degree of polymerization from 22-50 depending on the polymerization conditions. A polymerization mechanism at the interface of the hexane/nitromethane biphasic system is proposed. The conductivity of the PFA is tunable from 6.4 × 10-6 to 0.074 S cm-1 by doping with HCl or iodine. The conductivity can be significantly enhanced to 150 S cm-1 by heat treatment at 1100 °C in argon. A PFA-based chemosensor shows a highly selective sensitivity for Fe3+ detection which is unaffected by other common metal ions. The detection of Fe3+ likely involves the synergistic effect of well-distributed π-conjugated electrons throughout the PFA helical chains that function as both the fluorophore and the receptor units
    corecore