46,593 research outputs found
Modelling the microfiltration of lactic acid fermentation broths and comparison of operating modes
clarification of fermentation broths by cross-flow microfiltration. Microfiltration experiments conducted under
constant transmembrane pressure and under constant permeate fluxes (higher and lower than the critical flux)
were represented by the resistance in series model in which the membrane resistance, the adsorption resistance,
the bacteria cake resistance and the soluble compounds concentration polarisation resistance were taken into
account. The different operating modes were compared in terms of two industrial interest criteria: the
productivity and fouling rates. Higher productivities were obtained during constant transmembrane pressure
runs whereas the lowest fouling rate was observed during the run conducted with a constant permeate flux lower
than the critical flux. However, this fouling was mainly due to adsorption and solute components concentration
polarisation.
Key words
Removal of endocrine disrupting chemicals using low pressure reverse osmosis membrane
Endocrine disrupting chemicals (EDCs) are one of the major focuses of contaminants in current environmental issues, as they can cause adverse health effects on animals and human, particularly to endocrine function. The objective of this study was to remove a specific group of EDCs (i.e molecular weight range 228 to 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A multi-layer thin-film composite of aromatic polyamide (ES20) membrane and a C10-T cross flow module of LPROM manufactured by Nitto Denko Company was used in this study. The effects of operating parameters, i.e. pH, operating pressure, concentration and temperature were observed using a design of experiment based on MINITABTM software. The analysis of results was conducted by factorial analysis (FA) and response surface analysis (RSA). It was found that LPROM has been effectively applied to remove pentachlorophenol (PCP) (more than 83%), 17ß-estradiol (more than 87%) and bisphenol-A (BPA) (more than 87%). For permeate flux, both PCP and 17ß-estradiol tests produce excellent flux rate; i.e. 23.8 L/m2.h and 22.9 L/m2.h, respectively. For BPA, the permeate flux produced was slightly lower (19.1 L/m2.h) due to its physical-chemical properties effect at various levels of the recovery rate. In this study, the percentage of rejection was increased with the increased of pH and concentration of compounds. The flux was observed to increase with the increase of operating pressure. This study also investigated the interaction effects between operating parameters involved. In addition, statistical models were developed to represent the performance of LPROM under two response parameters, i.e. percentage of EDCs rejection and permeate flux. Statistical models were then validated using One-Factor-At-a-Time (OFAT) design of experiments and comparisons were made to better understand the trend of EDCs rejection and permeate flux
Effect of Photocatalysis on the Membrane Hybrid System for wastewater treatment
An integrated photocatalysismembrane hybrid system was investigated for wastewater treatment with the main focus on improving the cross flow microfiltration (MF) permeate flux. Photocatalysis with TiO2 (P25 Degussa) suspension as photocatalyst was applied both as pre-treatment and as inline treatment with MF. The TiO2 slurry was found to have significant effect in permeate flux for wastewater with lower dissolved organic carbon concentration. The MF flux decline due to TiO2 slurry cake on the membrane surface was minimized by allowing the TiO2 slurry to settle and by using only the supernatant for further treatment using the hybrid system. The investigation also included the study on the effect of photocatalytic reaction time and the slurry settling times on the MF permeate flux. The irradiation of ultraviolet on the MF surface in presence of TiO2 catalyst in suspension yielded in an increase in permeate flux
The boundary flux. New perspectives for membrane process design
In the last decades much effort was put in understanding fouling phenomena on membranes. Many new concepts have been introduced in time, and parallel to this many parameters capable to quantify fouling issues and fouling evolution. One successful approach was the introduction of the critical flux theory. At first validated for microfiltration, the theory applied to ultrafiltration and nanofiltration, too. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. Nevertheless, the application to the concept remains very limited: in many cases, in particular on systems where fouling is a main issue, critical fluxes were found to be very low, lower than economical feasibility permits to make membrane technology advantageous. Despite these arguments, the knowledge of the critical flux value still remains and must be considered as a good starting point for process design concerning productivity and longevity. In 2011, a new concept was introduced, that is the threshold flux. In this case, the concept evaluates the maximum permeate flow rate characterized by a low constant rate fouling regime, due to formation of a secondary, selective layer of foulant on the membrane surface. This concept, more than the critical flux, may be a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. In fact, critical and threshold flux concepts share many common aspects which merge perfectly into a new concept that is the boundary flux. The validation will occur mainly by the analysis of previous collected data by the authors, during the treatment of olive mill wastewater. A novel membrane process design method based on the boundary flux will then be presented
Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor
Ionic-electronic mixed-conducting perovskite-type oxide La0.6Sr0.4Co0.8Fe0.2O3 was applied as a dense membrane for oxygen supply in a reactor for methane coupling. The oxygen permeation properties were studied in the pO2-range of 10¿3¿1 bar at 1073¿1273 K, using helium as a sweeping gas at the permeate side of the membrane. The oxygen semi-permeability has a value close to 1 mmol m¿2 s¿1 at 1173 K with a corresponding activation energy of 130¿140 kJ/mol. The oxygen flux is limited by a surface process at the permeate side of the membrane. It was found that the oxygen flux is only slightly enhanced if methane is admixed with helium. Methane is converted to ethane and ethene with selectivities up to 70%, albeit that conversions are low, typically 1¿3% at 1073¿1173 K. When oxygen was admixed with methane rather than supplied through the membrane, selectivities obtained were found to be in the range 30¿35%. Segregation of strontium was found at both sides of the membrane, being seriously affected by the presence of an oxygen pressure gradient across it. The importance of a surface limited oxygen flux for application of perovskite membranes for methane coupling is emphasized
Air gap membrane distillation: A detailed study of high saline solution
An experimental study is used to examine the effect of high concentration of several salts, i.e., NaCl, MgCl2, Na2CO3 and Na2SO4 on permeate flux and rejection factor by air gap membrane distillation (AGMD). A comparative study involving three different membrane pore sizes (0.2, 0.45 and 1.0 μm) were performed to investigate the influence of pore size on energy consumption, permeate flux and rejection factor. The permeate flux decline is higher than that predicted from the vapour pressure reduction. Furthermore, the energy consumption was monitored at different membrane pore size and was found to be increased when the concentration increased
Effect of ph and ionic strength on permeate flux during separation of lactobacillus plantarum by using hollow fiber crossflow microfiltration
Microfiltration is a separation process used for cell harvesting in downstream process. Current research focused on the factor affecting the process of cell separation from fermentation broth to be recycled into the fermenter. The efficiency of solute separation by microfiltration can be influenced by solution pH and ionic strength. The objectives of this research is to study the effects of pH solution which is pH 4.5, 5.5, 6.5, 7.5, 8.5 and ionic strength on permeate flux of separation of Lactobacillus plantarum bacteria. For this research, the 0.2, 0.4, 0.6, 0.8 and 1.0 M of salt concentration are also used. At pH 8.5, permeate flux is the highest due to the electrostatic repulsion between the Lactobacillus plantarum bacteria and the surface of the membrane. The lowest permeate flux is at 1.0 M of ionic strength due to compaction of membrane and results in reduction of effective permeability. As conclusion, flux can be affected by pH solution and addition of salt. Increase in pH solution resulted in increase in permeate flux and addition of salt decreases permeate flux
Low fouling conditions in dead-end filtration: Evidence for a critical filtered volume and interpretation using critical osmotic pressure
This paper presents experiments showing the existence of a critical filtered volume (CFV) when operating colloid dead-end filtration. The CFV is here defined as the filtered volume below which there is no irreversible (with respect to a break in the filtration) fouling on the membrane surface: it has thus the same meaning as cross-flow critical flux but applied to a dead-end process. The existence of the CFV is demonstrated when filtering stable latex or clay suspensions in constant-flux filtration experiments with alternating rinses: in contradiction to the current view, an irreversible deposit is not formed as soon as dead-end filtration begins. This critical filtered volume is shown to be dependent on the suspension stability and to be fully linked to the permeate flux: for permeate fluxes of 80 and 110 l h−1 m−2 the CFV is, respectively, 82 and 65 l m−2 for latex particles. Analyses of results are made by depicting the transition between concentration polarisation and deposit formation considering a critical osmotic pressure, which appears to be a characteristic of the fouling potential of a suspension. The results are discussed in the light of how this concept could lead to an interesting way to control and develop a strategy to operate filtration in dead-end mode
Flow and filtration imaging of single use sterile membrane filters
Sterile filters incorporating endotoxin adsorption function emerged recently
to pretreat dialysate liquids fed to a hemodialysis filtration process. Their
application significantly enhances the survival rate during dialysis treatment
as they function as sterile filters as well as an endotoxin adsorber. Little is
known about the fluid flow distribution in such single use membrane modules. We
report a detailed analysis of the local 3D flow field distribution in such
membrane modules using magnetic resonance flow imaging. Next to pure water
filtration representing the application case of endotoxin adsorption from an
already pure liquid, we also used the module as a filtration device rejecting
for instance colloidal silica. Such experiments performed in-situ allow the
quantification of cake layer development and its concomitant redistribution of
the flow field. Particularly novel is the quantification of the time evolution
of local permeate flux distribution. These detailed insights of this study
encourage the use of flow-MRI when designing and applying new membrane module
configurations
Modeling Fixed Bed Membrane Reactors for Hydrogen Production through Steam Reforming Reactions: A Critical Analysis
Membrane reactors for hydrogen production have been extensively studied in the past years due to the interest in developing systems that are adequate for the decentralized production of high-purity hydrogen. Research in this field has been both experimental and theoretical. The aim of this work is two-fold. On the one hand, modeling work on membrane reactors that has been carried out in the past is presented and discussed, along with the constitutive equations used to describe the different phenomena characterizing the behavior of the system. On the other hand, an attempt is made to shed some light on the meaning and usefulness of models developed with different degrees of complexity. The motivation has been that, given the different ways and degrees in which transport models can be simplified, the process is not always straightforward and, in some cases, leads to conceptual inconsistencies that are not easily identifiable or identified
- …
