8 research outputs found

    Histogram Transform-based Speaker Identification

    Full text link
    A novel text-independent speaker identification (SI) method is proposed. This method uses the Mel-frequency Cepstral coefficients (MFCCs) and the dynamic information among adjacent frames as feature sets to capture speaker's characteristics. In order to utilize dynamic information, we design super-MFCCs features by cascading three neighboring MFCCs frames together. The probability density function (PDF) of these super-MFCCs features is estimated by the recently proposed histogram transform~(HT) method, which generates more training data by random transforms to realize the histogram PDF estimation and recedes the commonly occurred discontinuity problem in multivariate histograms computing. Compared to the conventional PDF estimation methods, such as Gaussian mixture models, the HT model shows promising improvement in the SI performance.Comment: Technical Repor

    Deep Neural Network for Analysis of DNA Methylation Data

    Full text link
    Many researches demonstrated that the DNA methylation, which occurs in the context of a CpG, has strong correlation with diseases, including cancer. There is a strong interest in analyzing the DNA methylation data to find how to distinguish different subtypes of the tumor. However, the conventional statistical methods are not suitable for analyzing the highly dimensional DNA methylation data with bounded support. In order to explicitly capture the properties of the data, we design a deep neural network, which composes of several stacked binary restricted Boltzmann machines, to learn the low dimensional deep features of the DNA methylation data. Experiments show these features perform best in breast cancer DNA methylation data cluster analysis, comparing with some state-of-the-art methods.Comment: Techinical Repor

    Language Identification with Deep Bottleneck Features

    Full text link
    In this paper we proposed an end-to-end short utterances speech language identification(SLD) approach based on a Long Short Term Memory (LSTM) neural network which is special suitable for SLD application in intelligent vehicles. Features used for LSTM learning are generated by a transfer learning method. Bottle-neck features of a deep neural network (DNN) which are trained for mandarin acoustic-phonetic classification are used for LSTM training. In order to improve the SLD accuracy of short utterances a phase vocoder based time-scale modification(TSM) method is used to reduce and increase speech rated of the test utterance. By splicing the normal, speech rate reduced and increased utterances, we can extend length of test utterances so as to improved improved the performance of the SLD system. The experimental results on AP17-OLR database shows that the proposed methods can improve the performance of SLD, especially on short utterance with 1s and 3s durations.Comment: Preliminary work repor

    Impacts of Weather Conditions on District Heat System

    Full text link
    Using artificial neural network for the prediction of heat demand has attracted more and more attention. Weather conditions, such as ambient temperature, wind speed and direct solar irradiance, have been identified as key input parameters. In order to further improve the model accuracy, it is of great importance to understand the influence of different parameters. Based on an Elman neural network (ENN), this paper investigates the impact of direct solar irradiance and wind speed on predicting the heat demand of a district heating network. Results show that including wind speed can generally result in a lower overall mean absolute percentage error (MAPE) (6.43%) than including direct solar irradiance (6.47%); while including direct solar irradiance can achieve a lower maximum absolute deviation (71.8%) than including wind speed (81.53%). In addition, even though including both wind speed and direct solar irradiance shows the best overall performance (MAPE=6.35%).Comment: Technical Repor

    Statistical Speech Model Description with VMF Mixture Model

    Full text link
    In this paper, we present the LSF parameters by a unit vector form, which has directional characteristics. The underlying distribution of this unit vector variable is modeled by a von Mises-Fisher mixture model (VMM). With the high rate theory, the optimal inter-component bit allocation strategy is proposed and the distortion-rate (D-R) relation is derived for the VMM based-VQ (VVQ). Experimental results show that the VVQ outperforms our recently introduced DVQ and the conventional GVQ.Comment: Technical Repor

    Vehicular Edge Computing via Deep Reinforcement Learning

    Full text link
    The smart vehicles construct Vehicle of Internet which can execute various intelligent services. Although the computation capability of the vehicle is limited, multi-type of edge computing nodes provide heterogeneous resources for vehicular services.When offloading the complicated service to the vehicular edge computing node, the decision should consider numerous factors.The offloading decision work mostly formulate the decision to a resource scheduling problem with single or multiple objective function and some constraints, and explore customized heuristics algorithms. However, offloading multiple data dependency tasks in a service is a difficult decision, as an optimal solution must understand the resource requirement, the access network, the user mobility, and importantly the data dependency. Inspired by recent advances in machine learning, we propose a knowledge driven (KD) service offloading decision framework for Vehicle of Internet, which provides the optimal policy directly from the environment. We formulate the offloading decision of multi-task in a service as a long-term planning problem, and explores the recent deep reinforcement learning to obtain the optimal solution. It considers the future data dependency of the following tasks when making decision for a current task from the learned offloading knowledge. Moreover, the framework supports the pre-training at the powerful edge computing node and continually online learning when the vehicular service is executed, so that it can adapt the environment changes and learns policy that are sensible in hindsight. The simulation results show that KD service offloading decision converges quickly, adapts to different conditions, and outperforms the greedy offloading decision algorithm.Comment: Preliminary report of ongoing wor

    Classification of EEG Signal based on non-Gaussian Neutral Vector

    Full text link
    In the design of brain-computer interface systems, classification of Electroencephalogram (EEG) signals is the essential part and a challenging task. Recently, as the marginalized discrete wavelet transform (mDWT) representations can reveal features related to the transient nature of the EEG signals, the mDWT coefficients have been frequently used in EEG signal classification. In our previous work, we have proposed a super-Dirichlet distribution-based classifier, which utilized the nonnegative and sum-to-one properties of the mDWT coefficients. The proposed classifier performed better than the state-of-the-art support vector machine-based classifier. In this paper, we further study the neutrality of the mDWT coefficients. Assuming the mDWT vector coefficients to be a neutral vector, we transform them non-linearly into a set of independent scalar coefficients. Feature selection strategy is proposed on the transformed feature domain. Experimental results show that the feature selection strategy helps improving the classification accuracy.Comment: Technical Repor

    Infinite Mixture of Inverted Dirichlet Distributions

    Full text link
    In this work, we develop a novel Bayesian estimation method for the Dirichlet process (DP) mixture of the inverted Dirichlet distributions, which has been shown to be very flexible for modeling vectors with positive elements. The recently proposed extended variational inference (EVI) framework is adopted to derive an analytically tractable solution. The convergency of the proposed algorithm is theoretically guaranteed by introducing single lower bound approximation to the original objective function in the VI framework. In principle, the proposed model can be viewed as an infinite inverted Dirichelt mixture model (InIDMM) that allows the automatic determination of the number of mixture components from data. Therefore, the problem of pre-determining the optimal number of mixing components has been overcome. Moreover, the problems of over-fitting and under-fitting are avoided by the Bayesian estimation approach. Comparing with several recently proposed DP-related methods, the good performance and effectiveness of the proposed method have been demonstrated with both synthesized data and real data evaluations.Comment: Technical Report of ongoing wor
    corecore