2,346,034 research outputs found
APFELgrid: a high performance tool for parton density determinations
We present a new software package designed to reduce the computational burden
of hadron collider measurements in Parton Distribution Function (PDF) fits. The
APFELgrid package converts interpolated weight tables provided by APPLgrid
files into a more efficient format for PDF fitting by the combination with PDF
and evolution factors provided by APFEL. This combination
significantly reduces the number of operations required to perform the
calculation of hadronic observables in PDF fits and simplifies the structure of
the calculation into a readily optimised scalar product. We demonstrate that
our technique can lead to a substantial speed improvement when compared to
existing methods without any reduction in numerical accuracy.Comment: 13 pages, 2 figures. Submitted to CPC. Code available from
https://github.com/nhartland/APFELgri
Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies
Despite the high accuracy of photometric redshifts (zphot) derived using
Machine Learning (ML) methods, the quantification of errors through reliable
and accurate Probability Density Functions (PDFs) is still an open problem.
First, because it is difficult to accurately assess the contribution from
different sources of errors, namely internal to the method itself and from the
photometric features defining the available parameter space. Second, because
the problem of defining a robust statistical method, always able to quantify
and qualify the PDF estimation validity, is still an open issue. We present a
comparison among PDFs obtained using three different methods on the same data
set: two ML techniques, METAPHOR (Machine-learning Estimation Tool for Accurate
PHOtometric Redshifts) and ANNz2, plus the spectral energy distribution
template fitting method, BPZ. The photometric data were extracted from the KiDS
(Kilo Degree Survey) ESO Data Release 3, while the spectroscopy was obtained
from the GAMA (Galaxy and Mass Assembly) Data Release 2. The statistical
evaluation of both individual and stacked PDFs was done through quantitative
and qualitative estimators, including a dummy PDF, useful to verify whether
different statistical estimators can correctly assess PDF quality. We conclude
that, in order to quantify the reliability and accuracy of any zphot PDF
method, a combined set of statistical estimators is required.Comment: Accepted for publication by MNRAS, 20 pages, 14 figure
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
- …
