2,171 research outputs found

    Flat Cosmology with Coupled Matter and Dark Energies

    Full text link
    Three models of a flat universe of coupled matter and dark energies with different low-redshift parameterizations of the dark energy equation of state are considered. The dark energy is assumed to vary with time like the trace of the energy-momentum tensor of cosmic matter. In the radiation-dominated era the models reduce to standard cosmology. In the matter-dominated era they are, for modern values of the cosmological parameters, consistent with data from SNe Ia searches and with the data of Gurvits et al.(1999)for angular sizes of ultra compact radio sources. We find that the angular size-redshift tests for our models offer a higher statistical confidence than that based on SNe Ia data. A comparison of our results with a recent revised analysis of angular size-redshift legacy data is made,and the implications of our models with optimized relativistic beaming in the radio sources is discussed. In particular we find that relativistic beaming implies a Lorentz factor less than 6,in agreement with its values for powerful Active Galactic Nuclei.Comment: Version to appear in The Astronomical Journal, with a modified name- Flat Cosmology with Coupled Matter and Dark Energies. Expanded and Modified conten

    Synchrotron radiation of self-collimating relativistic MHD jets

    Full text link
    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate depolarization and the detectability of a lambda^2-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles which could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bi-modality in polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint to the spin direction of the central engine.Comment: Submitted to Ap

    Cosmic-Ray and Neutrino Emission from Gamma-Ray Bursts with a Nuclear Cascade

    Full text link
    We discuss neutrino and cosmic-ray emission from Gamma-Ray Bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photo-disintegration can fully develop in the source. One of our main objectives is to test if recent results from the IceCube and the Pierre Auger Observatory can be accommodated with the paradigm that GRBs are the sources of Ultra-High Energy Cosmic Rays (UHECRs). While our key results are obtained using an internal shock model, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. It is demonstrated that the expected neutrino flux from GRBs weakly depends on the injection composition, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced in a combined source-propagation model. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic-ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from {\gamma}-ray observations.Comment: 36 pages, 25 figure

    Neutrinos and Ultra-High-Energy Cosmic-Ray Nuclei from Blazars

    Full text link
    We discuss the production of ultra-high-energy cosmic ray (UHECR) nuclei and neutrinos from blazars. We compute the nuclear cascade in the jet for both BL Lac objects and flat-spectrum radio quasars (FSRQs), and in the ambient radiation zones for FSRQs as well. By modeling representative spectral energy distributions along the blazar sequence, two distinct regimes are identified, which we call "nuclear survival" -- typically found in low-luminosity BL Lacs, and "nuclear cascade" -- typically found in high-luminosity FSRQs. We quantify how the neutrino and cosmic-ray (CR) emission efficiencies evolve over the blazar sequence, and demonstrate that neutrinos and CRs come from very different object classes. For example, high-frequency peaked BL Lacs (HBLs) tend to produce CRs, and HL-FSRQs are the more efficient neutrino emitters. This conclusion does not depend on the CR escape mechanism, for which we discuss two alternatives (diffusive and advective escape). Finally, the neutrino spectrum from blazars is shown to significantly depend on the injection composition into the jet, especially in the nuclear cascade case: Injection compositions heavier than protons lead to reduced neutrino production at the peak, which moves at the same time to lower energies. Thus, these sources will exhibit better compatibility with the observed IceCube and UHECR data.Comment: 23 pages, 20 figure
    • …
    corecore