23,764 research outputs found

    Fast Robust Subspace Tracking via PCA in Sparse Data-Dependent Noise

    Full text link
    This work studies the robust subspace tracking (ST) problem. Robust ST can be simply understood as a (slow) time-varying subspace extension of robust PCA. It assumes that the true data lies in a low-dimensional subspace that is either fixed or changes slowly with time. The goal is to track the changing subspaces over time in the presence of additive sparse outliers and to do this quickly (with a short delay). We introduce a "fast" mini-batch robust ST solution that is provably correct under mild assumptions. Here "fast" means two things: (i) the subspace changes can be detected and the subspaces can be tracked with near-optimal delay, and (ii) the time complexity of doing this is the same as that of simple (non-robust) PCA. Our main result assumes piecewise constant subspaces (needed for identifiability), but we also provide a corollary for the case when there is a little change at each time. A second contribution is a novel non-asymptotic guarantee for PCA in linearly data-dependent noise. An important setting where this is useful is for linearly data dependent noise that is sparse with support that changes enough over time. The analysis of the subspace update step of our proposed robust ST solution uses this result.Comment: To appear in IEEE Journal of Special Areas in Information Theor

    Low-rank and Sparse Soft Targets to Learn Better DNN Acoustic Models

    Full text link
    Conventional deep neural networks (DNN) for speech acoustic modeling rely on Gaussian mixture models (GMM) and hidden Markov model (HMM) to obtain binary class labels as the targets for DNN training. Subword classes in speech recognition systems correspond to context-dependent tied states or senones. The present work addresses some limitations of GMM-HMM senone alignments for DNN training. We hypothesize that the senone probabilities obtained from a DNN trained with binary labels can provide more accurate targets to learn better acoustic models. However, DNN outputs bear inaccuracies which are exhibited as high dimensional unstructured noise, whereas the informative components are structured and low-dimensional. We exploit principle component analysis (PCA) and sparse coding to characterize the senone subspaces. Enhanced probabilities obtained from low-rank and sparse reconstructions are used as soft-targets for DNN acoustic modeling, that also enables training with untranscribed data. Experiments conducted on AMI corpus shows 4.6% relative reduction in word error rate

    Detecting and quantifying stellar magnetic fields -- Sparse Stokes profile approximation using orthogonal matching pursuit

    Full text link
    In the recent years, we have seen a rapidly growing number of stellar magnetic field detections for various types of stars. Many of these magnetic fields are estimated from spectropolarimetric observations (Stokes V) by using the so-called center-of-gravity (COG) method. Unfortunately, the accuracy of this method rapidly deteriorates with increasing noise and thus calls for a more robust procedure that combines signal detection and field estimation. We introduce an estimation method that provides not only the effective or mean longitudinal magnetic field from an observed Stokes V profile but also uses the net absolute polarization of the profile to obtain an estimate of the apparent (i.e., velocity resolved) absolute longitudinal magnetic field. By combining the COG method with an orthogonal-matching-pursuit (OMP) approach, we were able to decompose observed Stokes profiles with an overcomplete dictionary of wavelet-basis functions to reliably reconstruct the observed Stokes profiles in the presence of noise. The elementary wave functions of the sparse reconstruction process were utilized to estimate the effective longitudinal magnetic field and the apparent absolute longitudinal magnetic field. A multiresolution analysis complements the OMP algorithm to provide a robust detection and estimation method. An extensive Monte-Carlo simulation confirms the reliability and accuracy of the magnetic OMP approach.Comment: A&A, in press, 15 pages, 14 figure

    A linear approach for sparse coding by a two-layer neural network

    Full text link
    Many approaches to transform classification problems from non-linear to linear by feature transformation have been recently presented in the literature. These notably include sparse coding methods and deep neural networks. However, many of these approaches require the repeated application of a learning process upon the presentation of unseen data input vectors, or else involve the use of large numbers of parameters and hyper-parameters, which must be chosen through cross-validation, thus increasing running time dramatically. In this paper, we propose and experimentally investigate a new approach for the purpose of overcoming limitations of both kinds. The proposed approach makes use of a linear auto-associative network (called SCNN) with just one hidden layer. The combination of this architecture with a specific error function to be minimized enables one to learn a linear encoder computing a sparse code which turns out to be as similar as possible to the sparse coding that one obtains by re-training the neural network. Importantly, the linearity of SCNN and the choice of the error function allow one to achieve reduced running time in the learning phase. The proposed architecture is evaluated on the basis of two standard machine learning tasks. Its performances are compared with those of recently proposed non-linear auto-associative neural networks. The overall results suggest that linear encoders can be profitably used to obtain sparse data representations in the context of machine learning problems, provided that an appropriate error function is used during the learning phase

    Adaptive Image Denoising by Targeted Databases

    Full text link
    We propose a data-dependent denoising procedure to restore noisy images. Different from existing denoising algorithms which search for patches from either the noisy image or a generic database, the new algorithm finds patches from a database that contains only relevant patches. We formulate the denoising problem as an optimal filter design problem and make two contributions. First, we determine the basis function of the denoising filter by solving a group sparsity minimization problem. The optimization formulation generalizes existing denoising algorithms and offers systematic analysis of the performance. Improvement methods are proposed to enhance the patch search process. Second, we determine the spectral coefficients of the denoising filter by considering a localized Bayesian prior. The localized prior leverages the similarity of the targeted database, alleviates the intensive Bayesian computation, and links the new method to the classical linear minimum mean squared error estimation. We demonstrate applications of the proposed method in a variety of scenarios, including text images, multiview images and face images. Experimental results show the superiority of the new algorithm over existing methods.Comment: 15 pages, 13 figures, 2 tables, journa
    • …
    corecore