369,647 research outputs found

    Agua y Suero Fisiológico para Prevenir la Formación de Paracloroanilina

    Get PDF
    Indexación: Web of Science; Scielo.ABSTRACT: This study determined if p-chloroaniline (PCA) can be minimized by using distilled water and physiological saline solution following sodium hypochlorite but before chlorhexidine. Hypochlorite 5%, 0.5%, 0.05%, 0.005% and 0.0005% dissolved in 0.9% NaCl and in distilled water were mixed with 2% chlorhexidine for the formation of PCA. The PCA was determined using UV-VISIBLE spectrometry, with spectral curve was determined the wavelength of maximum absorption of PCA. Formed PCA absorbance was measured between 0.025%, 0.02%, 0.015%, 0.01%, 0.005% and 0.0025% hypochlorite and 2% chlorhexidine. 2% chlorhexidine and hypochlorite with physiological saline form a white precipitate which prevents the measurement of PCA. Colored PCA is formed with 0.05%, 0.005% hypochlorite aqueous dilutions and 2% chlorhexidine. The lwavelength of maximum absorption obtained was 470 nm and absorbance of PCA showed a linear decrease. 0.005% NaClO produces the least amount of PCA. The best solvent to prevent the formation of PCA during the interaction of sodium hypochlorite with chlorhexidine is distilled water.Este estudio determinó si la p-cloroanilina (PCA) puede ser minimizada mediante el uso de agua destilada y solución salina fisiológica seguido de la aplicación de hipoclorito de sodio, previo a la aplicación de clorhexidina. Hipoclorito al 5%, 0,5%, 0,05%, 0,005% y 0,0005% fue disuelto en 0,9% de NaCl y en agua destilada se mezcló con 2% de clorhexidina para la formación de PCA. El PCA se determinó mediante espectrometría UV-Visible, y con curva espectral se determinó la longitud de onda máxima del PCA. La absorbancia del PCA formado se midió con 0,025%, 0,02%, 0,015%, 0,01%, 0,005% y 0,0025% de hipoclorito y 2% de clorhexidina. La combinación de 2% de clorhexidina e hipoclorito en solución salina fisiológica forman un precipitado blanco que impide la medición del PCA. El PCA coloreado es formado con 0,05%, 0,005% diluciones acuosas de hipoclorito y 2% de clorhexidina. La longitud de onda máxima obtenida fue de 470 nm y la absorbancia del PCA mostró una disminución lineal. NaClO al 0,005% produce menor cantidad de PCA. El mejor disolvente para evitar la formación de PCA durante la interacción de hipoclorito de sodio con clorhexidina es agua destilada.http://ref.scielo.org/2kpw6

    Domain swapping and amyloid fibril conformation

    Get PDF
    For several different proteins an apparent correlation has been observed between the propensity for dimerization by domain-swapping and the ability to aggregate into amyloid-like fibrils. Examples include the disease-related proteins beta2-microglobulin and transthyretin. This has led to proposals that the amyloid-formation pathway may feature extensive domain swapping. One possible consequence of such an aggregation pathway is that the resulting fibrils would incorporate structural elements that resemble the domain-swapped forms of the protein and, thus, reflect certain native-like structures or domain-interactions. In magic angle spinning solid-state NMR-based and other structural studies of such amyloid fibrils, it appears that many of these proteins form fibrils that are not native-like. Several fibrils instead have an in-register, parallel conformation, which is a common amyloid structural motif and is seen, for instance, in various prion fibrils. Such a lack of native structure in the fibrils suggests that the apparent connection between domain-swapping ability and amyloid-formation may be more subtle or complex than may be presumed at first glance. © 2012 Landes Bioscience

    Evaluation of T1 relaxation time in prostate cancer and benign prostate tissue using a Modified Look-Locker inversion recovery sequence

    Get PDF
    Purpose of this study was to evaluate the diagnostic performance of T1 relaxation time (T1) for differentiating prostate cancer (PCa) from benign tissue as well as high- from low-grade PCa. Twenty-three patients with suspicion for PCa were included in this prospective study. 3 T MRI including a Modified Look-Locker inversion recovery sequence was acquired. Subsequent targeted and systematic prostate biopsy served as a reference standard. T1 and apparent diffusion coefficient (ADC) value in PCa and reference regions without malignancy as well as high- and low-grade PCa were compared using the Mann-Whitney U test. The performance of T1, ADC value, and a combination of both to differentiate PCa and reference regions was assessed by receiver operating characteristic (ROC) analysis. T1 and ADC value were lower in PCa compared to reference regions in the peripheral and transition zone (p < 0.001). ROC analysis revealed high AUCs for T1 (0.92; 95%-CI, 0.87-0.98) and ADC value (0.97; 95%-CI, 0.94 to 1.0) when differentiating PCa and reference regions. A combination of T1 and ADC value yielded an even higher AUC. The difference was statistically significant comparing it to the AUC for ADC value alone (p = 0.02). No significant differences were found between high- and low-grade PCa for T1 (p = 0.31) and ADC value (p = 0.8). T1 relaxation time differs significantly between PCa and benign prostate tissue with lower T1 in PCa. It could represent an imaging biomarker for PCa

    Prostate-Associated Gene 4 (PAGE4): Leveraging the Conformational Dynamics of a Dancing Protein Cloud as a Therapeutic Target.

    Get PDF
    Prostate cancer (PCa) is a leading cause of mortality and morbidity globally. While genomic alterations have been identified in PCa, in contrast to some other cancers, use of such information to personalize treatment is still in its infancy. Here, we discuss how PAGE4, a protein which appears to act both as an oncogenic factor as well as a metastasis suppressor, is a novel therapeutic target for PCa. Inhibiting PAGE4 may be a viable strategy for low-risk PCa where it is highly upregulated. Conversely, PAGE4 expression is downregulated in metastatic PCa and, therefore, reinstituting its sustained expression may be a promising option to subvert or attenuate androgen-resistant PCa. Thus, fine-tuning the levels of PAGE4 may represent a novel approach for personalized medicine in PCa

    N-Dimensional Principal Component Analysis

    Get PDF
    In this paper, we first briefly introduce the multidimensional Principal Component Analysis (PCA) techniques, and then amend our previous N-dimensional PCA (ND-PCA) scheme by introducing multidirectional decomposition into ND-PCA implementation. For the case of high dimensionality, PCA technique is usually extended to an arbitrary n-dimensional space by the Higher-Order Singular Value Decomposition (HO-SVD) technique. Due to the size of tensor, HO-SVD implementation usually leads to a huge matrix along some direction of tensor, which is always beyond the capacity of an ordinary PC. The novelty of this paper is to amend our previous ND-PCA scheme to deal with this challenge and further prove that the revised ND-PCA scheme can provide a near optimal linear solution under the given error bound. To evaluate the numerical property of the revised ND-PCA scheme, experiments are performed on a set of 3D volume datasets

    An \u3cem\u3eIn Vitro\u3c/em\u3e Spectroscopic Analysis to Determine Whether Para-Chloroaniline Is Produced from Mixing Sodium Hypochlorite and Chlorhexidine

    Get PDF
    Introduction: The purpose of this in vitro study was to determine whether para-chloroaniline (PCA) is formed through the reaction of mixing sodium hypochlorite (NaOCl) and chlorhexidine (CHX). Methods: Initially, commercially available samples of chlorhexidine acetate (CHXa) and PCA were analyzed with 1H nuclear magnetic resonance (NMR) spectroscopy. Two solutions, NaOCl and CHXa, were warmed to 37ºC, and when mixed they produced a brown precipitate. This precipitate was separated in half, and pure PCA was added to 1 of the samples for comparison before they were each analyzed with 1H NMR spectroscopy. Results: The peaks in the 1H NMR spectra of CHXa and PCA were assigned to specific protons of the molecules, and the location of the aromatic peaks in the PCA spectrum defined the PCA doublet region. Although the spectrum of the precipitate alone resulted in a complex combination of peaks, on magnification there were no peaks in the PCA doublet region that were intense enough to be quantified. In the spectrum of the precipitate to which PCA was added, 2 peaks do appear in the PCA doublet region. Comparing this spectrum with that of precipitate alone, the peaks in the PCA doublet region are not visible before the addition of PCA. Conclusions: On the basis of this in vitro study, the reaction mixture of NaOCl and CHXa does not produce PCA at any measurable quantity, and further investigation is needed to determine the chemical composition of the brown precipitate
    corecore