19,983 research outputs found
Sex variation in patellar tendon kinetics during running
Purpose.
The aim of the current investigation was to determine whether female recreational runners exhibit distinct patellar tendon loading patterns in relation to their male counterparts.
Methods.
Twelve male (age 26.55 ± 4.11 years, height 1.78 ± 0.11 m,
mass 77.11 ± 5.06 kg) and twelve female (age 26.67 ± 5.34 years, height 1.67 ± 0.12 m, mass 63.28 ± 9.75 kg) runners ran over a force platform at 4.0 m · s –1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system which operated at 250 Hz. Patellar tendon loads were examined using a predictive algorithm. Sex differences in limb, knee and ankle joint stiffness were examined statistically using independent samples t tests.
Results.
The results indicate that patellar tendon force (male = 6.49 ± 2.28, female = 7.03 ± 1.35) and patelllar tendon loading rate (male = 92.41 ± 32.51, female = 111.05 ± 48.58) were significantly higher in female runners.
Conclusions.
Excessive tendon loading in female runners indicates that female runners may be at increased risk of patellar tendon pathologies
Patellar Tendon Morphology in Trans-tibial Amputees Utilizing a Prosthesis with a Patellar-tendon- Bearing Feature
A patellar-tendon-bearing (PTB) bar is a common design feature used in the socket of trans-tibial prostheses to place load on the pressure-tolerant tissue. As the patellar tendon in the residual limb is subjected to the perpendicular compressive force not commonly experienced in normal tendons, it is possible for tendon degeneration to occur over time. The purpose of this study was to compare patellar tendon morphology and neovascularity between the residual and intact limbs in trans-tibial amputees and healthy controls. Fifteen unilateral trans-tibial amputees who utilized a prosthesis with a PTB feature and 15 age- and sex- matched controls participated. Sonography was performed at the proximal, mid-, and distal portions of each patellar tendon. One-way ANOVAs were conducted to compare thickness and collagen fber organization and a chi-square analysis was used to compare the presence of neovascularity between the three tendon groups. Compared to healthy controls, both tendons in the amputees exhibited increased thickness at the mid- and distal portions and a higher degree of collagen fber disorganization. Furthermore, neovascularity was more common in the tendon of the residual limb. Our results suggest that the use of a prosthesis with a PTB feature contributes to morphological changes in bilateral patellar tendons
Structure, ontogeny and evolution of the patellar tendon in emus (Dromaius novaehollandiae) and other palaeognath birds
The patella (kneecap) exhibits multiple evolutionary origins in birds, mammals, and lizards, and is thought to increase the mechanical advantage of the knee extensor muscles. Despite appreciable interest in the specialized anatomy and locomotion of palaeognathous birds (ratites and relatives), the structure, ontogeny and evolution of the patella in these species remains poorly characterized. Within Palaeognathae, the patella has been reported to be either present, absent, or fused with other bones, but it is unclear how much of this variation is real, erroneous or ontogenetic. Clarification of the patella’s form in palaeognaths would provide insight into the early evolution of the patella in birds, in addition to the specialized locomotion of these species. Findings would also provide new character data of use in resolving the controversial evolutionary relationships of palaeognaths. In this study, we examined the gross and histological anatomy of the emu patellar tendon across several age groups from five weeks to 18 months. We combined these results with our observations and those of others regarding the patella in palaeognaths and their outgroups (both extant and extinct), to reconstruct the evolution of the patella in birds. We found no evidence of an ossified patella in emus, but noted its tendon to have a highly unusual morphology comprising large volumes of adipose tissue contained within a collagenous meshwork. The emu patellar tendon also included increasing amounts of a cartilage-like tissue throughout ontogeny. We speculate that the unusual morphology of the patellar tendon in emus results from assimilation of a peri-articular fat pad, and metaplastic formation of cartilage, both potentially as adaptations to increasing tendon load. We corroborate previous observations of a ‘double patella’ in ostriches, but in contrast to some assertions, we find independent (i.e., unfused) ossified patellae in kiwis and tinamous. Our reconstructions suggest a single evolutionary origin of the patella in birds and that the ancestral patella is likely to have been a composite structure comprising a small ossified portion, lost by some species (e.g., emus, moa) but expanded in others (e.g., ostriches)
Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus)
The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary ossification centres and/or changes in knee joint conformation, where enhancement of extensor muscle leverage would be more beneficial.Sophie Regnault, Marc E. H. Jones, Andrew A. Pitsillides, John R. Hutchinso
Reliability of ultrasound strain elastography in the assessment of the quadriceps and patellar tendon in healthy adults
The vasculature and its role in the damaged and healing tendon
Tendon pathology has many manifestations, from spontaneous rupture to chronic tendinitis or tendinosis; the etiology and pathology of each are very different, and poorly understood. Tendon is a comparatively poorly vascularised tissue that relies heavily upon synovial fluid diffusion to provide nutrition. During tendon injury, as with damage to any tissue, there is a requirement for cell infiltration from the blood system to provide the necessary reparative factors for tissue healing. We describe in this review the response of the vasculature to tendon damage in a number of forms, and how and when the revascularisation or neovascularisation process occurs. We also include a section on the revascularisation of tendon during its use as a tendon graft in both ligament reconstruction and tendon–tendon grafting
Classification of Tendon Matrix Change Using Ultrasound Imaging: A Systematic Review and Meta-analysis
Finite-element modelling of mechanobiological factors influencing sesamoid tissue morphology in the patellar tendon of an ostrich
The appearance and shape of sesamoid bones within a tendon or ligament wrapping around a joint are understood to be influenced by both genetic and epigenetic factors. Ostriches (Struthio camelus) possess two sesamoid patellae (kneecaps), one of which (the distal patella) is unique to their lineage, making them a good model for investigating sesamoid tissue development and evolution. Here we used finite-element modelling to test the hypothesis that specific mechanical cues in the ostrich patellar tendon favour the formation of multiple patellae. Using three-dimensional models that allow application of loading conditions in which all muscles, or only distal or only proximal muscles to be activated, we found that there were multiple regions within the tendon where transformation from soft tissue to fibrocartilage was favourable and therefore a potential for multiple patellae based solely upon mechanical stimuli. While more studies are needed to better understand universal mechanobiological principles as well as full developmental processes, our findings suggest that a tissue differentiation algorithm using shear strain and compressive strain as inputs may be a roughly effective predictor of the tissue differentiation required for sesamoid development
Current Issues and Regulations in Tendon Regeneration and Musculoskeletal Repair with Mesenchymal Stem Cells
Mesenchymal stem cells are multipotent stromal cells residing within the connective tissue of most organs. Their surface phenotype has been well described. Most commonly, mesenchymal stem cells demonstrate the ability to differentiate into mesenchymal tissues (bone, catailge, fat, etc...), however, under the proper conditions these cells can differentiate into epithelial cells and neuroectoderm derived lineages. Their developmental plasticity also depends on the ability of mesenchymal stem cells to alter the tissue microenvironment by secreting soluble factors, as well as their capacity for differentiation in tissue repair. It is the cell-matrix interaction which defines the tissue characteristics. The molecular and functional heterogeneity of this cell population may confound interpretation of their differentiation potential, but it is this heterogeneity that is believed to provide for their therapeutic efficacy. Stem cell therapies are an attractive therapeutic approach for soft tissues as they offer a vehicle for repair and regeneration at the end of a needle. The early introduction of stem cell treatments into the therapeutic armamentarium involves both commercial and non-commercial multidisciplinary partnerships and has occurred in a climate of regulatory reform, so not all the relevant information resides in the public domain, but early clinical studies have shown promising results. Against this backdrop, novel techniques and early results of a small series of tendon and musculotendinous junction interventions are being published and other ongoing studies are yet to report their results. The issue of ensuring governance of these novel technologies falls upon both the scientific community and the established licensing authorities
Staging achilles tendinopathy using ultrasound imaging: The development and investigation of a new ultrasound imaging criteria based on the continuum model of tendon pathology
AimTo develop a standardised ultrasound imaging (USI)-based criteria for the diagnosis of tendinopathy that aligns with the continuum model of tendon pathology. Secondary aims were to assess both the intra-rater and inter-rater reliability of the criteria.MethodsA criteria was developed following a face validity assessment and a total of 31 Achilles tendon ultrasound images were analysed. Intra-rater and inter-rater reliability were assessed for overall tendinopathy stage (normal, reactive/early dysrepair or late dysrepair/degenerative) as well as for individual parameters (thickness, echogenicity and vascularity). Quadratic weighted kappa (kw) was used to report on reliability.ResultsIntra-rater reliability was ‘substantial’ for overall tendinopathy staging (kw rater A; 0.77, 95% CI 0.59 to 0.94, rater B; 0.70, 95% CI 0.52 to 0.89) and ranged from ‘substantial’ to ‘almost perfect’ for thickness (kw rater A; 0.75, 95% CI 0.59 to 0.90, rater B; 0.84, 95% CI 0.71 to 0.98), echogenicity (kw rater A; 0.78, 95% CI 0.62 to 0.95, rater B; 0.73, 95% CI 0.58 to 0.89) and vascularity (kw rater A; 0.86, 95% CI 0.74 to 0.98, rater B; 0.89, 95% CI 0.79 to 0.99). Inter-rater reliability ranged from ‘substantial’ to ‘almost perfect’ for overall tendinopathy staging (kw round 1; 0.75, 95% CI 0.58 to 0.91, round 2; 0.81, 95% CI 0.63 to 0.99), thickness (kw round 1; 0.65, 95% CI 0.48 to 0.83, round 2; 0.77, 95% CI 0.60 to 0.93), echogenicity (kw round 1; 0.70, 95% CI 0.54 to 0.85, round 2; 0.76, 95% CI 0.58 to 0.94) and vascularity (kw round 1; 0.89, 95% CI 0.79 to 0.99, round 2; 0.86, 95% CI 0.74 to 0.98). Inter-rater reliability increased from ‘substantial’ in round 1 (kw 0.75, 95% CI 0.58 to 0.91) to ‘almost perfect’ in round 2 (0.81, 95% CI 0.63 to 0.99).ConclusionIntra-rater and inter-rater reliability were ‘substantial’ to ‘almost perfect’ when utilising an USI-based criteria to diagnose Achilles tendinopathy. This is the first study to use the continuum model of tendon pathology to develop an USI-based criteria to diagnose tendinopathy
- …
