1,332 research outputs found

    Comparison of signalized junction control strategies using individual vehicle position data

    No full text
    This paper is concerned with the development of control strategies for urban signalized junction that can make use of individual vehicle position data from localization probes on board the vehicles. Strategy development involves simulating the behaviour of vehicles as they negotiate junctions controlled by prototype strategies and evaluating performance. Two strategies are discussed in this paper, a simple auctioning agent strategy and an extended auctioning agent strategy where a machine learning approach is used to enable agents to be trained by a human expert to improve performance. The performance of these two strategies are compared with each other and with the MOVA algorithm in simulated tests. The results show that auctioning agents using individual vehicle position data can out perform MOVA, but that this performance can be improved further still by using learning auctioning agents trained by a human expert

    A review of traffic simulation software

    Get PDF
    Computer simulation of tra c is a widely used method in research of tra c modelling, planning and development of tra c networks and systems. Vehicular tra c systems are of growing concern and interest globally and modelling arbitrarily complex tra c systems is a hard problem. In this article we review some of the tra c simulation software applications, their features and characteristics as well as the issues these applications face. Additionally, we introduce some algorithmic ideas, underpinning data structural approaches and quanti able metrics that can be applied to simulated model systems

    Assessment of different urban traffic control strategy impacts on vehicle emissions

    Get PDF
    This paper investigates the influence of traffic signal control strategy on vehicle emissions, vehicle journey time and total throughput flow within a single isolated four-armed junction. Two pre-timed signal plans are considered, one with two-stages involving permissive-only opposing turns and the other with four-stages which has no conflicting traffic. Additionally, the increase in efficiency by utilising actuated signal timing where green time is re-optimised as flow values vary is investigated. A microscopic traffic simulation model is used to model flows and AIRE (Analysis of Instantaneous Road Emissions) microscopic emissions model is utilised to out- put emission levels from the flow data. A simple junction model shows that the two-stage signal plan is more efficient in both emis- sions and journey time. However, as the level of opposed turning vehicles and conflicting movement increases, the two-stage model moves to being the inferior signal plan choice and the four-stage plan outputs fewer emissions than the two-stage plan. A real-world example of a four-armed junction has been used in this study and from the traffic survey data and existing junction layout; it is rec- ommended that a two-stage plan is used as it produces lower amounts of emissions and shorter journey times compared to a four-stage plan. The results also show that nitrogen oxides (NOx) are the most sensitive to changes in flow followed by carbon dioxide (CO2), Black Carbon and then particulate matter (PM10)

    Impact of traffic management on black carbon emissions: a microsimulation study

    Get PDF
    This paper investigates the effectiveness of traffic management tools, includ- ing traffic signal control and en-route navigation provided by variable message signs (VMS), in reducing traffic congestion and associated emissions of CO2, NOx, and black carbon. The latter is among the most significant contributors of climate change, and is associated with many serious health problems. This study combines traffic microsimulation (S-Paramics) with emission modeling (AIRE) to simulate and predict the impacts of different traffic management measures on a number traffic and environmental Key Performance Indicators (KPIs) assessed at different spatial levels. Simulation results for a real road network located in West Glasgow suggest that these traffic management tools can bring a reduction in travel delay and BC emission respectively by up to 6 % and 3 % network wide. The improvement at local levels such as junctions or corridors can be more significant. However, our results also show that the potential benefits of such interventions are strongly dependent on a number of factors, including dynamic demand profile, VMS compliance rate, and fleet composition. Extensive discussion based on the simulation results as well as managerial insights are provided to support traffic network operation and control with environmental goals. The study described by this paper was conducted under the support of the FP7-funded CARBOTRAF project

    Fine-grained traffic state estimation and visualisation

    No full text
    Tools for visualising the current traffic state are used by local authorities for strategic monitoring of the traffic network and by everyday users for planning their journey. Popular visualisations include those provided by Google Maps and by Inrix. Both employ a traffic lights colour-coding system, where roads on a map are coloured green if traffic is flowing normally and red or black if there is congestion. New sensor technology, especially from wireless sources, is allowing resolution down to lane level. A case study is reported in which a traffic micro-simulation test bed is used to generate high-resolution estimates. An interactive visualisation of the fine-grained traffic state is presented. The visualisation is demonstrated using Google Earth and affords the user a detailed three-dimensional view of the traffic state down to lane level in real time

    Assessment of traffic impact on future cooperative driving systems: challenges and considerations

    Get PDF
    Connect & Drive is a start-up project to develop a cooperative driving system and improve the traffic performance on Dutch highways. It consists of two interactive subsystems: cooperative adaptive cruise control (CACC) and connected cruise control (CCC). To assess the traffic performance, a traffic simulation model will be established for large-scale evaluation and providing feedbacks to system designs. This paper studies the factors determining the traffic performance and discusses challenges and difficulties to establish such a traffic simulation model

    Modelling Driver Interdependent Behaviour in Agent-Based Traffic Simulations for Disaster Management

    No full text
    Accurate modelling of driver behaviour in evacuations is vitally important in creating realistic training environments for disaster management. However, few current models have satisfactorily incorporated the variety of factors that affect driver behaviour. In particular, the interdependence of driver behaviours is often seen in real-world evacuations, but is not represented in current state-of-the art traffic simulators. To address this shortcoming, we present an agent-based behaviour model based on the social forces model of crowds. Our model uses utility-based path trees to represent the forces which affect a driver's decisions. We demonstrate, by using a metric of route similarity, that our model is able to reproduce the real-life evacuation behaviour whereby drivers follow the routes taken by others. The model is compared to the two most commonly used route choice algorithms, that of quickest route and real-time re-routing, on three road networks: an artificial "ladder" network, and those of Lousiana, USA and Southampton, UK. When our route choice forces model is used our measure of route similarity increases by 21%-93%. Furthermore, a qualitative comparison demonstrates that the model can reproduce patterns of behaviour observed in the 2005 evacuation of the New Orleans area during Hurricane Katrina
    • …
    corecore