8,006 research outputs found
The use of analysis of variance and three-way factor analysis methods for studying the quality of a sensory panel
In sensory analysis a panel of assessors evaluate a collection of samples/products with
respect to a number of sensory characteristics. Assessments are collected in a threeway
data matrix crossing products, attributes and assessors. The main objective of the
experiment is to evaluate products. However, the performance of each assessor and of the
panel as a whole is of crucial importance for a successful analysis. At this aim univariate
analysis for each sensory attribute as well as multi-way analysis considering all directions
of information are usually performed. The present work studies the quality of a panel
using both methods. The basic idea is to compare results and investigate relations between
the two different analytical approaches
Joint Tensor Factorization and Outlying Slab Suppression with Applications
We consider factoring low-rank tensors in the presence of outlying slabs.
This problem is important in practice, because data collected in many
real-world applications, such as speech, fluorescence, and some social network
data, fit this paradigm. Prior work tackles this problem by iteratively
selecting a fixed number of slabs and fitting, a procedure which may not
converge. We formulate this problem from a group-sparsity promoting point of
view, and propose an alternating optimization framework to handle the
corresponding () minimization-based low-rank tensor
factorization problem. The proposed algorithm features a similar per-iteration
complexity as the plain trilinear alternating least squares (TALS) algorithm.
Convergence of the proposed algorithm is also easy to analyze under the
framework of alternating optimization and its variants. In addition,
regularization and constraints can be easily incorporated to make use of
\emph{a priori} information on the latent loading factors. Simulations and real
data experiments on blind speech separation, fluorescence data analysis, and
social network mining are used to showcase the effectiveness of the proposed
algorithm
Bayesian factorizations of big sparse tensors
It has become routine to collect data that are structured as multiway arrays
(tensors). There is an enormous literature on low rank and sparse matrix
factorizations, but limited consideration of extensions to the tensor case in
statistics. The most common low rank tensor factorization relies on parallel
factor analysis (PARAFAC), which expresses a rank tensor as a sum of rank
one tensors. When observations are only available for a tiny subset of the
cells of a big tensor, the low rank assumption is not sufficient and PARAFAC
has poor performance. We induce an additional layer of dimension reduction by
allowing the effective rank to vary across dimensions of the table. For
concreteness, we focus on a contingency table application. Taking a Bayesian
approach, we place priors on terms in the factorization and develop an
efficient Gibbs sampler for posterior computation. Theory is provided showing
posterior concentration rates in high-dimensional settings, and the methods are
shown to have excellent performance in simulations and several real data
applications
Nonnegative approximations of nonnegative tensors
We study the decomposition of a nonnegative tensor into a minimal sum of
outer product of nonnegative vectors and the associated parsimonious naive
Bayes probabilistic model. We show that the corresponding approximation
problem, which is central to nonnegative PARAFAC, will always have optimal
solutions. The result holds for any choice of norms and, under a mild
assumption, even Bregman divergences.Comment: 14 page
Approximate Rank-Detecting Factorization of Low-Rank Tensors
We present an algorithm, AROFAC2, which detects the (CP-)rank of a degree 3
tensor and calculates its factorization into rank-one components. We provide
generative conditions for the algorithm to work and demonstrate on both
synthetic and real world data that AROFAC2 is a potentially outperforming
alternative to the gold standard PARAFAC over which it has the advantages that
it can intrinsically detect the true rank, avoids spurious components, and is
stable with respect to outliers and non-Gaussian noise
Front-face fluorescence spectroscopy and chemometrics for quality control of cold-pressed rapeseed oil during storage
The aim of this study was to test the usability of fluorescence spectroscopy to evaluate the stability of cold-pressed rapeseed oil during storage. Freshly-pressed rapeseed oil was stored in colorless and green glass bottles exposed to light, and in darkness for a period of 6 months. The quality deterioration of oils was evaluated on the basis of several chemical parameters (peroxide value, acid value, K232 and K270, polar compounds, tocopherols, carotenoids, pheophytins, oxygen concentration) and fluorescence. Parallel factor analysis (PARAFAC) of oil excitation-emission matrices revealed the presence of four fluorophores that showed different evolution throughout the storage period. The fluorescence study provided direct information about tocopherol and pheophytin degradation and revealed formation of a new fluorescent product. Principal component analysis (PCA) performed on analytical and fluorescence data showed that oxidation was more advanced in samples exposed to light due to the photo-induced processes; only a very minor effect of the bottle color was observed. Multiple linear regression (MLR) and partial least squares regression (PLSR) on the PARAFAC scores revealed a quantitative relationship between fluorescence and some of the chemical parameters.Funding Agency
Ministry of Science and Higher Education, Poland
NN312428239
Poznan University of Economics and Businessinfo:eu-repo/semantics/publishedVersio
- …
