241 research outputs found

    Explicit Learning Curves for Transduction and Application to Clustering and Compression Algorithms

    Full text link
    Inductive learning is based on inferring a general rule from a finite data set and using it to label new data. In transduction one attempts to solve the problem of using a labeled training set to label a set of unlabeled points, which are given to the learner prior to learning. Although transduction seems at the outset to be an easier task than induction, there have not been many provably useful algorithms for transduction. Moreover, the precise relation between induction and transduction has not yet been determined. The main theoretical developments related to transduction were presented by Vapnik more than twenty years ago. One of Vapnik's basic results is a rather tight error bound for transductive classification based on an exact computation of the hypergeometric tail. While tight, this bound is given implicitly via a computational routine. Our first contribution is a somewhat looser but explicit characterization of a slightly extended PAC-Bayesian version of Vapnik's transductive bound. This characterization is obtained using concentration inequalities for the tail of sums of random variables obtained by sampling without replacement. We then derive error bounds for compression schemes such as (transductive) support vector machines and for transduction algorithms based on clustering. The main observation used for deriving these new error bounds and algorithms is that the unlabeled test points, which in the transductive setting are known in advance, can be used in order to construct useful data dependent prior distributions over the hypothesis space

    PAC-Bayesian Learning and Domain Adaptation

    Full text link
    In machine learning, Domain Adaptation (DA) arises when the distribution gen- erating the test (target) data differs from the one generating the learning (source) data. It is well known that DA is an hard task even under strong assumptions, among which the covariate-shift where the source and target distributions diverge only in their marginals, i.e. they have the same labeling function. Another popular approach is to consider an hypothesis class that moves closer the two distributions while implying a low-error for both tasks. This is a VC-dim approach that restricts the complexity of an hypothesis class in order to get good generalization. Instead, we propose a PAC-Bayesian approach that seeks for suitable weights to be given to each hypothesis in order to build a majority vote. We prove a new DA bound in the PAC-Bayesian context. This leads us to design the first DA-PAC-Bayesian algorithm based on the minimization of the proposed bound. Doing so, we seek for a \rho-weighted majority vote that takes into account a trade-off between three quantities. The first two quantities being, as usual in the PAC-Bayesian approach, (a) the complexity of the majority vote (measured by a Kullback-Leibler divergence) and (b) its empirical risk (measured by the \rho-average errors on the source sample). The third quantity is (c) the capacity of the majority vote to distinguish some structural difference between the source and target samples.Comment: https://sites.google.com/site/multitradeoffs2012

    Domain Adaptation of Majority Votes via Perturbed Variation-based Label Transfer

    Full text link
    We tackle the PAC-Bayesian Domain Adaptation (DA) problem. This arrives when one desires to learn, from a source distribution, a good weighted majority vote (over a set of classifiers) on a different target distribution. In this context, the disagreement between classifiers is known crucial to control. In non-DA supervised setting, a theoretical bound - the C-bound - involves this disagreement and leads to a majority vote learning algorithm: MinCq. In this work, we extend MinCq to DA by taking advantage of an elegant divergence between distribution called the Perturbed Varation (PV). Firstly, justified by a new formulation of the C-bound, we provide to MinCq a target sample labeled thanks to a PV-based self-labeling focused on regions where the source and target marginal distributions are closer. Secondly, we propose an original process for tuning the hyperparameters. Our framework shows very promising results on a toy problem

    Improved Vapnik Cervonenkis bounds

    Get PDF
    We give a new proof of VC bounds where we avoid the use of symmetrization and use a shadow sample of arbitrary size. We also improve on the variance term. This results in better constants, as shown on numerical examples. Moreover our bounds still hold for non identically distributed independent random variables. Keywords: Statistical learning theory, PAC-Bayesian theorems, VC dimension

    Domain adaptation of weighted majority votes via perturbed variation-based self-labeling

    Full text link
    In machine learning, the domain adaptation problem arrives when the test (target) and the train (source) data are generated from different distributions. A key applied issue is thus the design of algorithms able to generalize on a new distribution, for which we have no label information. We focus on learning classification models defined as a weighted majority vote over a set of real-val ued functions. In this context, Germain et al. (2013) have shown that a measure of disagreement between these functions is crucial to control. The core of this measure is a theoretical bound--the C-bound (Lacasse et al., 2007)--which involves the disagreement and leads to a well performing majority vote learning algorithm in usual non-adaptative supervised setting: MinCq. In this work, we propose a framework to extend MinCq to a domain adaptation scenario. This procedure takes advantage of the recent perturbed variation divergence between distributions proposed by Harel and Mannor (2012). Justified by a theoretical bound on the target risk of the vote, we provide to MinCq a target sample labeled thanks to a perturbed variation-based self-labeling focused on the regions where the source and target marginals appear similar. We also study the influence of our self-labeling, from which we deduce an original process for tuning the hyperparameters. Finally, our framework called PV-MinCq shows very promising results on a rotation and translation synthetic problem

    Validation of Matching

    Full text link
    We introduce a technique to compute probably approximately correct (PAC) bounds on precision and recall for matching algorithms. The bounds require some verified matches, but those matches may be used to develop the algorithms. The bounds can be applied to network reconciliation or entity resolution algorithms, which identify nodes in different networks or values in a data set that correspond to the same entity. For network reconciliation, the bounds do not require knowledge of the network generation process

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure
    • …
    corecore