14,514 research outputs found
Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications
© The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio
Bivalirudin started during emergency transport for primary PCI.
BACKGROUND: Bivalirudin, as compared with heparin and glycoprotein IIb/IIIa inhibitors, has been shown to reduce rates of bleeding and death in patients undergoing primary percutaneous coronary intervention (PCI). Whether these benefits persist in contemporary practice characterized by prehospital initiation of treatment, optional use of glycoprotein IIb/IIIa inhibitors and novel P2Y12 inhibitors, and radial-artery PCI access use is unknown. METHODS: We randomly assigned 2218 patients with ST-segment elevation myocardial infarction (STEMI) who were being transported for primary PCI to receive either bivalirudin or unfractionated or low-molecular-weight heparin with optional glycoprotein IIb/IIIa inhibitors (control group). The primary outcome at 30 days was a composite of death or major bleeding not associated with coronary-artery bypass grafting (CABG), and the principal secondary outcome was a composite of death, reinfarction, or non-CABG major bleeding. RESULTS: Bivalirudin, as compared with the control intervention, reduced the risk of the primary outcome (5.1% vs. 8.5%; relative risk, 0.60; 95% confidence interval [CI], 0.43 to 0.82; P=0.001) and the principal secondary outcome (6.6% vs. 9.2%; relative risk, 0.72; 95% CI, 0.54 to 0.96; P=0.02). Bivalirudin also reduced the risk of major bleeding (2.6% vs. 6.0%; relative risk, 0.43; 95% CI, 0.28 to 0.66; P<0.001). The risk of acute stent thrombosis was higher with bivalirudin (1.1% vs. 0.2%; relative risk, 6.11; 95% CI, 1.37 to 27.24; P=0.007). There was no significant difference in rates of death (2.9% vs. 3.1%) or reinfarction (1.7% vs. 0.9%). Results were consistent across subgroups of patients. CONCLUSIONS: Bivalirudin, started during transport for primary PCI, improved 30-day clinical outcomes with a reduction in major bleeding but with an increase in acute stent thrombosis. (Funded by the Medicines Company; EUROMAX ClinicalTrials.gov number, NCT01087723.)
Consolidation of P2Y12 Testing While Maintaining Quality and Turnaround Time
Objective:
To consolidate the test performed at 2 different locations at 1, thereby improving cost effectiveness while maintaining quality and result turnaround time.https://jdc.jefferson.edu/patientsafetyposters/1059/thumbnail.jp
Rationale and design of "Can Very Low Dose Rivaroxaban (VLDR) in addition to dual antiplatelet therapy improve thrombotic status in acute coronary syndrome (VaLiDate-R)" study : A randomised trial modulating endogenous fibrinolysis in patients with acute coronary syndrome
© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.Impaired endogenous fibrinolysis is novel biomarker that can identify patients with ACS at increased cardiovascular risk. The addition of Very Low Dose Rivaroxaban (VLDR) to dual antiplatelet therapy has been shown to reduce cardiovascular events but at a cost of increased bleeding and is therefore not suitable for all-comers. Targeted additional pharmacotherapy with VLDR to improve endogenous fibrinolysis may improve outcomes in high-risk patients, whilst avoiding unnecessary bleeding in low-risk individuals. The VaLiDate-R study (ClinicalTrials.gov Identifier: NCT03775746, EudraCT: 2018-003299-11) is an investigator-initiated, randomised, open-label, single centre trial comparing the effect of 3 antithrombotic regimens on endogenous fibrinolysis in 150 patients with ACS. Subjects whose screening blood test shows impaired fibrinolytic status (lysis time > 2000s), will be randomised to one of 3 treatment arms in a 1:1:1 ratio: clopidogrel 75 mg daily (Group 1); clopidogrel 75 mg daily plus rivaroxaban 2.5 mg twice daily (Group 2); ticagrelor 90 mg twice daily (Group 3), in addition to aspirin 75 mg daily. Rivaroxaban will be given for 30 days. Fibrinolytic status will be assessed during admission and at 2, 4 and 8 weeks. The primary outcome measure is the change in fibrinolysis time from admission to 4 weeks follow-up, using the Global Thrombosis Test. If VLDR can improve endogenous fibrinolysis in ACS, future large-scale studies would be required to assess whether targeted use of VLDR in patients with ACS and impaired fibrinolysis can translate into improved clinical outcomes, with reduction in major adverse cardiovascular events in this high-risk cohort.Peer reviewedFinal Published versio
P2 purinoceptors signaling in fibroblasts of rat subcutaneous tissue
Mestrado em Biologia Molecular e CelularO tecido conjuntivo parece estar envolvido na génese de diversas condições patológicas. O aumento da rigidez do tecido conjuntivo, resultante da fibrose, pode constituir um factor importante no mecanismo patogénico da dor crónica resistente a fármacos (Langevin & Sherman, 2007). Por outro lado, os nucleótidos extracelulares parecem estar envolvidos na fisiopatologia da dor crónica (Burnstock, 2001). Assim, este estudo teve como objectivo averiguar o efeito dos nucleótidos de adenina e uridina na proliferação e síntese de colagénio tipo I de fibroblastos do tecido subcutâneo de rato em cultura.
Os resultados obtidos mostram que a incubação com UTP (0.3-100 M, n=5) induz um aumento da proliferação e da produção de colagénio tipo I, o qual é dependente da concentração. Contrariamente, o agonista selectivo dos receptores P2Y2, o MRS 2768 (10 μM, n=3), não teve qualquer efeito no que se refere à proliferação, mas diminuiu significativamente (P<0.05) a síntese de colagénio tipo I. Uma vez que o aumento da produção de colagénio induzida pelo UTP (100 μM) foi proporcional ao aumento do número de células (proliferação celular),podemos especular que este aumento se deve ao aumento do número de células per si do que a uma maior actividade sintética de cada célula. Assim, ao normalizar os valores do colagénio tipo I em relação aos valores obtidos do MTT para os mesmos momentos/dias, deixamos de observar diferenças estatisticamente significativas entre o controlo e as células expostas ao UTP.
Uma vez que os receptores P2Y2 não parecem estar envolvidos nesta resposta do UTP (100 μM), esta poderá estar a ser mediada pela activação dos receptores P2Y4 e/ou P2Y6. Considerando que o RB-2 (10 μM, n=5), um antagonista não selectivo que actua preferencialmente no subtipo de receptores P2Y4, não foi capaz de modificar a resposta induzida pelo UTP (100 μM), os receptores P2Y4 parecem também não estar envolvidos. Por outro lado, o MRS 2578 (100 nM), um antagonista selectivo dos receptores P2Y6, atenuou de forma significativa o aumento induzido pelo UTP (100 μM).
A corroborar os nossos resultados, uma análise imunocitoquímica mostrou uma imunorreactividade positiva contra os receptores P2Y2 e P2Y6, mostrando um padrão de marcação citoplasmático/membranar, o qual é típico para este tipo de receptores, ao contrário do padrão nuclear exibido pelo anticorpo contra os receptores P2Y4.
Relativamente ao envolvimento dos receptores sensíveis ao ADP, os resultados obtidos mostraram que o ADPβS (10-100 μM, n=3-6), um análogo estável do ADP, não parece induzir efeitos significativamente diferentes (P>0.05) na proliferação celular. Contudo, a sua incubação continuada aumentou a produção de colagénio tipo I de forma dependente da concentração (P<0.05). De modo a identificar os receptores purinérgicos envolvidos neste efeito, testamos o ADPβS (100 μM) na presença do MRS 2179 (0.3 μM), do AR-C 66096 (0.1 μM), e do MRS 2211 (10 μM), os quais antagonizam selectivamente os receptores P2Y1, P2Y12 e P2Y13, respectivamente. O efeito facilitatório induzido pelo ADPβS (100 μM) foi atenuado de forma significativa na presença do antagonista dos receptores P2Y1, o MRS 2179 (0.3 μM, n=3), sem ser afectado pelo antagonista dos receptores P2Y12, o AR- C 66096 (0.1 μM, n=3). Pelo contrário, o MRS 2211 (10 μM, n=2) potenciou o aumento da produção de colagénio induzida pelo ADPβS (100 μM), indicando assim que a síntese de colagénio tipo I induzida pelo receptor P2Y1 pode estar a ser parcialmente influenciada por uma activação síncrona do receptor inibitório P2Y13. Por último, uma análise por imunocitoquímica mostrou que estas células apresentam imunorreactividade positiva para os receptores P2Y1 e P2Y13, exibindo um padrão citoplasmático/membranar, contrariamente ao padrão nuclear dos receptores ostentado pelo anticorpo contra os receptores P2Y12.
Concluindo, a remodelação da fáscia superficial induzida pelos fibroblastos parece ser regulada por um balanço entre a activação dos receptores P2Y2 e P2Y6, assim como dos receptores P2Y13 e P2Y1. Clarificar as vias que conduzem ao processo de fibrose pode representar uma oportunidade para esclarecer o seu envolvimento na patogénese da dor crónica musculo-esquelética, bem como ser útil no desenvolvimento de novas estratégias terapêuticas.Connective tissue may be involved in the pathogenesis of a wide variety of disease conditions. Increased connective tissue stiffness due to fibrosis may be an important link to the pathogenic mechanism leading to drug-resistant chronic pain (Langevin & Sherman, 2007). In addition, extracellular nucleotides seem to be involved in the pathophysiology of chronic pain (Burnstock, 2001). Therefore, we aimed at investigating the effect of adenine and uridine nucleotides on the proliferation and synthesis of type I collagen by rat fibroblasts from subcutaneous connective tissue.
The results showed that continuous incubation of UTP (0.3-100 M, n=5) concentration-dependently increased fibroblasts proliferation, as also increased the synthesis of type I collagen above the control levels. Conversely, the selective P2Y2 agonist, MRS 2768 (10 μM, n=3), was devoid of effect in what concerns proliferation, but significantly (P<0.05) decreased type I collagen synthesis. Since the increase in type I collagen synthesis induced by UTP (100 μM) was proportional to the increase in the amount of cells in the culture (fibroblasts proliferation), we speculated that such an increase could be related to the increase in the cell number rather than a higher synthetic activity. Thus, we performed a more detailed data analysis, in which we normalized type I collagen production taking into consideration the MTT values obtained at the same time points, and we observed no longer significant differences between control and UTP-exposed cells.
Discounting the contribution of MRS 2768-sensitive P2Y2 receptors, UTP (100 μM)-induced increase in cells proliferation could be due to P2Y4 and/or P2Y6 receptor activation. Since RB-2 (10 μM, n=5), a non-selective antagonist that acts preferentially on the P2Y4 subtype, did not modify the effect of UTP (100 μM), P2Y4 does not seem to be involved. In turn, MRS 2578 (100 nM), which is a selective P2Y6 antagonist, significantly attenuated UTP (100 μM)-induced increase.
To corroborate our results, an immunocytochemistry analysis showed a positive immunoreactivity against the P2Y2 and P2Y6 receptors exhibiting a cytoplasmic/membrane labeling pattern, which is typical for those receptors in many different cells, conversely to the nuclear labeling pattern exhibited by the antibody against the P2Y4.
To investigate the involvement of ADP-sensitive P2 receptors on cell proliferation and extracellular matrix production, fibroblast cultures were continuously incubated with the stable ADP analogue, ADPβS (10-100 μM). Results obtained with ADPβS (10-100 μM, n=3-6) showed no significant (P>0.05) differences in fibroblast cells proliferation. However, a continuous incubation with ADPβS (10-100 μM, n=2-5) concentration-dependently increased type I collagen production by fibroblasts (P<0.05). In order to identify which purinoceptor(s) that could be mediating this effect, we tested ADPβS (100 μM) in the presence of MRS 2179 (0.3 μM), AR-C 66096 (0.1 μM), and MRS 2211 (10 μM), which antagonize selectively ADP-sensitive P2Y1, P2Y12 and P2Y13 receptors, respectively. The facilitatory effect of ADPβS (100 μM) was significantly attenuated in the presence of the P2Y1 antagonist, MRS 2179 (0.3 μM, n=3), without being affected by the P2Y12 antagonist, AR- C 66096 (0.1 μM, n=3). In contrast, MRS 2211 (10 μM, n=2) potentiated the effect of ADPβS (100 μM) on type I collagen synthesis, thus indicating that the P2Y1-receptor-induction of type I collagen synthesis may be partially counteracted by synchronous activation of the inhibitory P2Y13 receptor. Finally, an immunocytochemistry analysis showed that these cells exhibit immunoreactivity to P2Y1 and P2Y13 receptors with a cytoplasmic/membrane staining pattern, conversely to the nuclear pattern of P2Y12.
Concluding, a delicate balance between the activation of P2Y2 and P2Y6, as well as P2Y13 and P2Y1 purinoceptors, might regulate fibroblast’s induced superficial fascia remodeling. Targeting the pathways leading to fibrosis may represent an opportunity to clarify its involvement in the pathogenesis of musculoskeletal chronic pain and it may be useful for designing novel therapeutic strategies to overcome this disease
Systematic review and meta-analysis of optimal P2Y₁₂ blockade in dual antiplatelet therapy for patients with diabetes with acute coronary syndrome
Background: Patients with diabetes are at increased risk of acute coronary syndromes (ACS) and their mortality and morbidity outcomes are significantly worse following ACS events, independent of other comorbidities. This systematic review sought to establish the optimum management strategy with focus on P2Y₁₂ blockade in patients with diabetes with ACS. Methods: MEDLINE (1946 to present) and EMBASE (1974 to present) databases, abstracts from major cardiology conferences and previously published systematic reviews were searched to June 2014. Relevant randomised control trials with clinical outcomes for P2Y₁₂ inhibitors in adult patients with diabetes with ACS were scrutinised independently by 2 authors with applicable data was extracted for primary composite end point of cardiovascular death, myocardial infarction (MI) and stroke; enabling calculation of relative risks with 95% CI with subsequent direct and indirect comparison. Results: Four studies studied clopidogrel in patients with diabetes, with two (3122 patients) having primary outcome data showing superiority of clopidogrel against placebo with RR0.84 (95% CI 0.72–0.99). Irrespective of management strategy, the newer agents prasugrel (2 studies) and ticagrelor (1 study) had a lower primary event rate compared with clopidogrel; RR 0.80 (95% CI 0.66 to 0.97) and RR 0.89 (95% CI 0.77 to 1.02), respectively. When ticagrelor was indirectly compared with prasugrel, there was a trend to an improved primary outcome with prasugrel (RR 1.11 (95% CI 0.94 to 1.31)) particularly in those managed with percutaneous coronary intervention (PCI) (RR 1.23 (95% CI 0.95 to 1.59)). Prasugrel demonstrated a statistical superiority with prevention of further MI with RR 1.48 (95% CI 1.11 to 1.97). This was not at the expense of increased major thrombolysis in MI (TIMI) bleeding rates RR 0.94 (95% CI 0.59 to 1.51). Conclusions: This meta-analysis shows the addition of a P2Y₁₂ inhibitor is superior to placebo, with a trend favouring the use of prasugrel in patients with diabetes with ACS, particularly those undergoing PCI
Elevated Baseline Serum Fibrinogen: Effect on 2-Year Major Adverse Cardiovascular Events Following Percutaneous Coronary Intervention.
BackgroundElevated fibrinogen is associated with short-term major adverse cardiovascular events (MACE) after percutaneous coronary intervention, but the relation with late MACE is unknown.Methods and resultsBaseline demographics and 2-year MACE were recorded among subjects undergoing nonemergent percutaneous coronary intervention. A total of 332 subjects (66.6±19.5 years, 69.9% male, 25.3% acute coronary syndrome) were enrolled. Two-year MACE (periprocedural myocardial infarction 9.0%, rehospitalization 6.3%, revascularization 12.7%, non-periprocedural myocardial infarction 4.5%, stent thrombosis 0.9%, stroke 1.8%, and death 0.6%) were associated with higher fibrinogen (352.8±123.4 mg/dL versus 301.6±110.8 mg/dL; P<0.001), longer total stent length (40.1±25.3 mm versus 32.1±19.3 mm; P=0.004), acute coronary syndrome indication (38.7% versus 17.8%; P<0.001), number of bare-metal stents (0.5±1.1 versus 0.2±0.5; P=0.002), and stent diameter ≤2.5 mm (55.8% versus 38.4%, P=0.003). No relation between platelet reactivity and 2-year MACE was observed. Fibrinogen ≥280 mg/dL (odds ratio [OR] 3.0, confidence interval [CI], 1.6-5.4, P<0.001), total stent length ≥32 mm (OR 2.2, CI, 1.3-3.8, P<0.001), acute coronary syndrome indication (OR 4.1, CI, 2.3-7.5, P<0.001), any bare-metal stents (OR 3.2, CI, 1.6-6.1, P<0.001), and stent diameter ≤2.5 mm (OR 2.0, CI, 1.2-3.5, P=0.010) were independently associated with 2-year MACE. Following a landmark analysis excluding periprocedural myocardial infarction, fibrinogen ≥280 mg/dL remained strongly associated with 2-year MACE (37.0% versus 17.4%, log-rank P<0.001).ConclusionsElevated baseline fibrinogen level is associated with 2-year MACE after percutaneous coronary intervention. Acute coronary syndrome indication for percutaneous coronary intervention, total stent length implanted, and use of bare-metal stents or smaller-diameter stents are also independently associated with 2-year MACE, while measures of on-thienopyridine platelet reactivity are not
Metabolism of ticagrelor in patients with acute coronary syndromes.
© The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio
Platelet signaling--blood's great balancing act
The antagonistic balance between CalDAG-GEFI and RASA3 signaling is critical for the fine-tuning of platelet adhesiveness, both in the circulation and at sites of vascular injury
- …
