453 research outputs found

    A class of nonparametric DSSY nonconforming quadrilateral elements

    Full text link
    A new class of nonparametric nonconforming quadrilateral finite elements is introduced which has the midpoint continuity and the mean value continuity at the interfaces of elements simultaneously as the rectangular DSSY element [J.Douglas, Jr., J. E. Santos, D. Sheen, and X. Ye. Nonconforming {G}alerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM--Math. Model. Numer. Anal., 33(4):747--770, 1999]. The parametric DSSY element for general quadrilaterals requires five degrees of freedom to have an optimal order of convergence [Z. Cai, J. Douglas, Jr., J. E. Santos, D. Sheen, and X. Ye. Nonconforming quadrilateral finite elements: A correction. Calcolo, 37(4):253--254, 2000], while the new nonparametric DSSY elements require only four degrees of freedom. The design of new elements is based on the decomposition of a bilinear transform into a simple bilinear map followed by a suitable affine map. Numerical results are presented to compare the new elements with the parametric DSSY element.Comment: 20 page

    Stable finite element pair for Stokes problem and discrete Stokes complex on quadrilateral grids

    Full text link
    In this paper, we first construct a nonconforming finite element pair for the incompressible Stokes problem on quadrilateral grids, and then construct a discrete Stokes complex associated with that finite element pair. The finite element spaces involved consist of piecewise polynomials only, and the divergence-free condition is imposed in a primal formulation. Combined with some existing results, these constructions can be generated onto grids that consist of both triangular and quadrilateral cells

    Stable cheapest nonconforming finite elements for the Stokes equations

    Full text link
    We introduce two pairs of stable cheapest nonconforming finite element space pairs to approximate the Stokes equations. One pair has each component of its velocity field to be approximated by the P1P_1 nonconforming quadrilateral element while the pressure field is approximated by the piecewise constant function with globally two-dimensional subspaces removed: one removed space is due to the integral mean--zero property and the other space consists of global checker--board patterns. The other pair consists of the velocity space as the P1P_1 nonconforming quadrilateral element enriched by a globally one--dimensional macro bubble function space based on DSSYDSSY (Douglas-Santos-Sheen-Ye) nonconforming finite element space; the pressure field is approximated by the piecewise constant function with mean--zero space eliminated. We show that two element pairs satisfy the discrete inf-sup condition uniformly. And we investigate the relationship between them. Several numerical examples are shown to confirm the efficiency and reliability of the proposed methods
    • …
    corecore