11,041 research outputs found

    Seeing voices and hearing voices: learning discriminative embeddings using cross-modal self-supervision

    Full text link
    The goal of this work is to train discriminative cross-modal embeddings without access to manually annotated data. Recent advances in self-supervised learning have shown that effective representations can be learnt from natural cross-modal synchrony. We build on earlier work to train embeddings that are more discriminative for uni-modal downstream tasks. To this end, we propose a novel training strategy that not only optimises metrics across modalities, but also enforces intra-class feature separation within each of the modalities. The effectiveness of the method is demonstrated on two downstream tasks: lip reading using the features trained on audio-visual synchronisation, and speaker recognition using the features trained for cross-modal biometric matching. The proposed method outperforms state-of-the-art self-supervised baselines by a signficant margin.Comment: Under submission as a conference pape

    MedFuse: Multi-modal fusion with clinical time-series data and chest X-ray images

    Full text link
    Multi-modal fusion approaches aim to integrate information from different data sources. Unlike natural datasets, such as in audio-visual applications, where samples consist of "paired" modalities, data in healthcare is often collected asynchronously. Hence, requiring the presence of all modalities for a given sample is not realistic for clinical tasks and significantly limits the size of the dataset during training. In this paper, we propose MedFuse, a conceptually simple yet promising LSTM-based fusion module that can accommodate uni-modal as well as multi-modal input. We evaluate the fusion method and introduce new benchmark results for in-hospital mortality prediction and phenotype classification, using clinical time-series data in the MIMIC-IV dataset and corresponding chest X-ray images in MIMIC-CXR. Compared to more complex multi-modal fusion strategies, MedFuse provides a performance improvement by a large margin on the fully paired test set. It also remains robust across the partially paired test set containing samples with missing chest X-ray images. We release our code for reproducibility and to enable the evaluation of competing models in the future

    VoLTA: Vision-Language Transformer with Weakly-Supervised Local-Feature Alignment

    Full text link
    Vision-language pre-training (VLP) has recently proven highly effective for various uni- and multi-modal downstream applications. However, most existing end-to-end VLP methods use high-resolution image-text box data to perform well on fine-grained region-level tasks, such as object detection, segmentation, and referring expression comprehension. Unfortunately, such high-resolution images with accurate bounding box annotations are expensive to collect and use for supervision at scale. In this work, we propose VoLTA (Vision-Language Transformer with weakly-supervised local-feature Alignment), a new VLP paradigm that only utilizes image-caption data but achieves fine-grained region-level image understanding, eliminating the use of expensive box annotations. VoLTA adopts graph optimal transport-based weakly-supervised alignment on local image patches and text tokens to germinate an explicit, self-normalized, and interpretable low-level matching criterion. In addition, VoLTA pushes multi-modal fusion deep into the uni-modal backbones during pre-training and removes fusion-specific transformer layers, further reducing memory requirements. Extensive experiments on a wide range of vision- and vision-language downstream tasks demonstrate the effectiveness of VoLTA on fine-grained applications without compromising the coarse-grained downstream performance, often outperforming methods using significantly more caption and box annotations
    • …
    corecore