37,799 research outputs found

    Electron Transfer Reaction Through an Adsorbed Layer

    Full text link
    We consider electron transfer from a redox to an electrode through and adsorbed intermediate. The formalism is developed to cover all regimes of coverage factor, from lone adsorbate to monolayer regime. The randomness in the distribution of adsorbates is handled using coherent potential approximation. We give current-overpotential profile for all coverage regimes. We explictly analyse the low and high coverage regimes by supplementing with DOS profile for adsorbate in both weakly coupled and strongly coupled sector. The prominence of bonding and anti-bonding states in the strongly coupled adsorbates at low coverage gives rise to saddle point behaviour in current-overpotential profile. We were able to recover the marcus inverted region at low coverage and the traditional direct electron transfer behaviour at high coverage

    Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics

    Get PDF
    The oxygen evolution reaction (OER) is known as the efficiency-limiting step for the electrochemical cleavage of water mainly due to the large overpotentials commonly used materials on the anode side cause. Since Ni–Fe oxides reduce overpotentials occurring in the OER dramatically they are regarded as anode materials of choice for the electrocatalytically driven water-splitting reaction. We herewith show that a straightforward surface modification carried out with AISI 304, a general purpose austenitic stainless steel, very likely, based upon a dissolution mechanism, to result in the formation of an ultra-thin layer consisting of Ni, Fe oxide with a purity >99%. The Ni enriched thin layer firmly attached to the steel substrate is responsible for the unusual highly efficient anodic conversion of water into oxygen as demonstrated by the low overpotential of 212 mV at 12 mA cm−2 current density in 1 M KOH, 269.2 mV at 10 mA cm−2 current density in 0.1 M KOH respectively. The Ni, Fe-oxide layer formed on the steel creates a stable outer sphere, and the surface oxidized steel samples proved to be inert against longer operating times (>150 ks) in alkaline medium. In addition Faradaic efficiency measurements performed through chronopotentiometry revealed a charge to oxygen conversion close to 100%, thus underpinning the conclusion that no “inner oxidation” based on further oxidation of the metal matrix below the oxide layer occurs. These key figures achieved with an almost unrivalled-inexpensive and unrivalled-accessible material, are among the best ever presented activity characteristics for the anodic water-splitting reaction at pH 13

    Electrode polarization at the Au, O2(g)/yttria stabilized zirconia interface. Part II: electrochemical measurements and analysis

    Get PDF
    The impedance of the Au, O2 (g) / yttria stabilized zirconia interface has been measured as function of the overpotential, temperature and oxygen partial pressure. At large cathodic overpotentials (η < −0.1 V) and large anodic overpotentials (η > +0.1 V) inductive effects are observed in the impedance diagram at low frequencies. Those inductive effects result from a charge transfer mechanism where a stepwise transfer of electrons towards adsorbed oxygen species occurs. A model analysis shows that the inductive effects at cathodic overpotentials appear when the fraction of coverage of one of the intermediates increases with more negative cathodic overpotentials. The steady state current-voltage characteristics can be analyzed with a Butler-Volmer type of equation. The apparent cathodic charge transfer coefficient is close to c=0.5 and the apparent anodic charge transfer coefficient varies between 1.7< a<2.8. The logarithm of the equilibrium exchange current density (Io) shows a positive dependence on the logarithm of the oxygen partial pressure with a slope of m= (0.60 ± 0.02). Both the apparent cathodic charge transfer coefficient and the oxygen partial pressure dependence of Io are in accordance with a reaction model where a competition exists between charge transfer and mass transport of molecular adsorbed oxygen species along the electrode/solid electrolyte interface. The apparent anodic charge transfer coefficients deviate from the model prediction.\u

    Nitrogen loss and oxygen evolution reaction activity of perovskite oxynitrides

    Full text link
    Perovskite oxynitride photocatalysts were reported by experiment to evolve small amounts of N2_2 due to the self-oxidation of nitrogen ions by photo-generated holes. The N2_2 evolution rate was observed to decrease with increasing reaction time and was found to be correlated with a decrease in O2_2 evolution (OER) activity, the origin of this latter effect however being unknown. Here we investigate, by means of density functional theory calculation, anion vacancies at the TaON-terminated (001) surface of the perovskite oxynitride SrTaO2_2N. We find an energetic preference for oxygen and nitrogen vacancies to reside at the surface, where they are spontaneously healed by *O and *OH adsorbates under OER conditions. For nitrogen vacancies, this self-healing leads to an altered stoichiometry Ta4_4O8+x_{8+x}N4x_{4-x} that is accompanied by electron doping. Substitution of N by O at the surface also leads to tensile strain, which confines the excess charge to the very surface layer, affecting the binding energy of reaction intermediates and significantly increasing the OER overpotential. This peculiar change in electronic structure thus provides an atomic scale explanation for the experimentally observed drop in OER activity of perovskite oxynitrides.Comment: 15 pages, 7 figure

    Temperature-Dependence of the Solid-Electrolyte Interphase Overpotential: Part I. Two Parallel Mechanisms, One Phase Transition

    Full text link
    It has been shown recently that the overpotential originating from ionic conduction of alkali-ions through the inner dense solid-electrolyte interphase (SEI) is strongly non-linear. An empirical equation was proposed to merge the measured resistances from both galvanostatic cycling (GS) and electrochemical impedance spectroscopy (EIS) at 25^{\circ}C. Here, this analysis is extended to the full temperature range of batteries from -40^{\circ}C to +80^{\circ}C for Li, Na, K and Rb-metal electrodes in carbonate electrolytes. Two different transport mechanisms are found. The first one conducts alkali-ions at all measured temperatures. The second transport mechanism conducts ions for all seven measured Li-ion electrolytes and one out of four Na-ion electrolytes, however, only above a certain critical temperature TCT_C. At TCT_C a phase transition is observed switching-off the more efficient transport mechanism and leaving only the general ion conduction mechanism. The associated overpotentials increase rapidly below TCT_C depending on alkali-ion, salt and solvent and become a limiting factor during galvanostatic operation of all Li-ion electrolytes at low temperature. In general, the current analysis merges the SEI resistances measured by EIS ranging from 26 Ω\Omegacm2^2 for the best Li up to 292 MΩ\Omegacm2^2 for Rb electrodes to its galvanostatic response over seven orders of magnitude. The determined critical temperatures are between 0-25^{\circ}C for the tested Li and above 50^{\circ}C for Na electrolytes.Comment: 10 pages, 7 figures, file includes Suppl Info, http://jes.ecsdl.org/content/165/2/A32

    A zero dimensional model of lithium-sulfur batteries during charge and discharge

    Get PDF
    Lithium-sulfur cells present an attractive alternative to Li-ion batteries due to their large energy density, safety, and possible low cost. Their successful commercialisation is dependent on improving their performance, but also on acquiring sufficient understanding of the underlying mechanisms to allow for the development of predictive models for operational cells. To address the latter, we present a zero dimensional model that predicts many observed features in the behaviour of a lithium-sulfur cell during charge and discharge. The model accounts for two electrochemical reactions via the Nernst formulation, power limitations through Butler-Volmer kinetics, and precipitation/dissolution of one species, including nucleation. It is shown that the precipitation/dissolution causes the flat shape of the low voltage plateau, typical of the lithium-sulfur cell discharge. During charge, it is predicted that the dissolution can act as a bottleneck, as for large enough currents smaller amounts dissolve. This results in reduced charge capacity and an earlier onset of the high plateau reaction, such that the two plateaus merge. By including these effects, the model improves on the existing zero dimensional models, while requiring considerably fewer input parameters and computational resources. The model also predicts that, due to precipitation, the customary way of experimentally measuring the open circuit voltage from a low rate discharge might not be suitable for lithium-sulfur. This model can provide the basis for mechanistic studies, identification of dominant effects in a real cell, predictions of operational behaviour under realistic loads, and control algorithms for applications

    Measuring individual overpotentials in an operating solid-oxide electrochemical cell

    Full text link
    We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly measured. The method is validated using electrochemical impedance spectroscopy. Using the overpotentials, which characterize the cell's inefficiencies, we compare without ambiguity the electro-catalytic efficiencies of Ni and Pt, finding that on Ni H_2O splitting proceeds more rapidly than H2 oxidation, while on Pt, H2 oxidation proceeds more rapidly than H2O splitting.Comment: corrected; Phys. Chem. Chem. Phys., 201
    corecore