5 research outputs found

    Forward Error Correction for Multipath Media Streaming

    Full text link

    Forward Error Correction for Multipath Media Streaming

    Get PDF
    We address the problem of joint optimal rate allocation and scheduling between media source rate and error protection rate in scalable streaming applications over lossy multipath networks. Starting from a distortion representation of the received media information at the client, we propose a novel optimization framework in which we analyze the performance of the most relevant forward error correction and scheduling techniques. We describe both optimal and heuristic algorithms that find solutions to the rate allocation and scheduling problem, and emphasize the main characteristics of the compared techniques. Our results show that efficient unequal error protection schemes improve the quality of the streaming process. At the same time we emphasize the importance of priority scheduling of the information over the best available network paths, which outperforms traditional first-in-first-out models or network flooding mechanisms

    A scheme for efficient peer-to-peer live video streaming over wireless mesh networks

    Get PDF
    Peers in a Peer-to-Peer (P2P) live video streaming system over hybrid wireless mesh networks (WMNs) enjoy high video quality when both random network coding (RNC) and an efficient hybrid routing protocol are employed. Although RNC is the most recently used method of efficient video streaming, it imposes high transmission overhead and decoding computational complexity on the network which reduces the perceived video quality. Besides that, RNC cannot guaranty a non-existence of linear dependency in the generated coefficients matrix. In WMNs, node mobility has not been efficiently addressed by current hybrid routing protocols that increase video distortion which would lead to low video quality. In addition, these protocols cannot efficiently support nodes which operate in infrastructure mode. Therefore, the purpose of this research is to propose a P2P live video streaming scheme which consists of two phases followed by the integration of these two phases known as the third phase to provide high video quality in hybrid WMNs. In the first phase, a novel coefficients matrix generation and inversion method has been proposed to address the mentioned limitations of RNC. In the second phase, the proposed enhanced hybrid routing protocol was used to efficiently route video streams among nodes using the most stable path with low routing overhead. Moreover, this protocol effectively supports mobility and nodes which operate in infrastructure mode by exploiting the advantages of the designed locator service. Results of simulations from the first phase showed that video distortion as the most important performance metric in live video streaming, had improved by 36 percent in comparison with current RNC method which employs the Gauss-Jordan Elimination (RNC-GJE) method in decoding. Other metrics including frame dependency distortion, initial start-up delay and end-to-end delay have also improved using the proposed method. Based on previous studies, although Reactive (DYMO) routing protocol provides better performance than other existing routing protocols in a hybrid WMN, the proposed protocol in the second phase had average improvements in video distortion of l86% for hybrid wireless mesh protocol (HWMP), 49% for Reactive (Dynamic MANET On-Demand-DYMO), 75% for Proactive (Optimized Link State Routing-OLSR), and 60% for Ad-hoc on-demand Distance Vector Spanning-Tree (AODV-ST). Other metrics including end-to-end delay, packet delay variation, routing overhead and number of delivered video frames have also improved using the proposed protocol. Finally, the third phase, an integration of the first two phases has proven to be an efficient scheme for high quality P2P live video streaming over hybrid WMNs. This video streaming scheme had averagely improved video distortion by 41%, frame dependency distortion by 50%, initial start-up delay by 15% and end-to-end delay by 33% in comparison with the average introduced values by three other considered integration cases which are Reactive and RNC-GJE, Reactive and the first phase, the second phase and RNC-GJE

    DYNAMIC RESOURCE ALLOCATION FOR MULTIUSER VIDEO STREAMING

    Get PDF
    With the advancement of video compression technology and wide deployment of wired/wireless networks, there is an increasing demand of multiuser video communication services. A multiuser video transmission system should consider not only the reconstructed video quality in the individual-user level but also the service objectives among all users on the network level. There are many design challenges to support multiuser video communication services, such as fading channels, limited radio resources of wireless networks, heterogeneity of video content complexity, delay and decoding dependency constraints of video bitstreams, and mixed integer optimization. To overcome these challenges, a general strategy is to dynamically allocate resources according to the changing environments and requirements, so as to improve the overall system performance and ensure quality of service (QoS) for each user. In this dissertation, we address the aforementioned design challenges from a resource-allocation point of view and two aspects of system and algorithm designs, namely, a cross-layer design that jointly optimizes resource utilization from physical layer to application layer, and multiuser diversity that explores the source and channel heterogeneity among different users. We also address the impacts on systems caused by dynamic environment along time domain and consider the time-heterogeneity of video sources and time-varying characteristics of channel conditions. To achieve the desired service objectives, a general resource allocation framework is formulated in terms of constrained optimization problems to dynamically allocate resources and control the quality of multiple video bitstreams. Based on the design methodology of multiuser cross-layer optimization, we propose several systems to efficiently transmit multiple video streams, encoded by current and emerging video codecs, over major types of wireless networks such as 3G cellular system, Wireless Local Area Network, 4G cellular system, and future Wireless Metropolitan Area Networks. Owing to the integer nature of some system parameters, the formulated optimization problems are often integer or mixed integer programming problem and involve high computation to search the optimal solutions. Fast algorithms are proposed to provide real-time services. We demonstrate the advantages of dynamic and joint resource allocation for multiple video sources compared to static strategy. We also show the improvement of exploring diversity on frequency, time, and transmission path, and the benefits from multiuser cross-layer optimization
    corecore