17,005 research outputs found

    Revisiting Interval Graphs for Network Science

    Full text link
    The vertices of an interval graph represent intervals over a real line where overlapping intervals denote that their corresponding vertices are adjacent. This implies that the vertices are measurable by a metric and there exists a linear structure in the system. The generalization is an embedding of a graph onto a multi-dimensional Euclidean space and it was used by scientists to study the multi-relational complexity of ecology. However the research went out of fashion in the 1980s and was not revisited when Network Science recently expressed interests with multi-relational networks known as multiplexes. This paper studies interval graphs from the perspective of Network Science

    DEMON: a Local-First Discovery Method for Overlapping Communities

    Full text link
    Community discovery in complex networks is an interesting problem with a number of applications, especially in the knowledge extraction task in social and information networks. However, many large networks often lack a particular community organization at a global level. In these cases, traditional graph partitioning algorithms fail to let the latent knowledge embedded in modular structure emerge, because they impose a top-down global view of a network. We propose here a simple local-first approach to community discovery, able to unveil the modular organization of real complex networks. This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, i.e. its ego neighborhood, using a label propagation algorithm; finally, the local communities are merged into a global collection. We tested this intuition against the state-of-the-art overlapping and non-overlapping community discovery methods, and found that our new method clearly outperforms the others in the quality of the obtained communities, evaluated by using the extracted communities to predict the metadata about the nodes of several real world networks. We also show how our method is deterministic, fully incremental, and has a limited time complexity, so that it can be used on web-scale real networks.Comment: 9 pages; Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, August 12-16, 201

    Principled Multilayer Network Embedding

    Full text link
    Multilayer network analysis has become a vital tool for understanding different relationships and their interactions in a complex system, where each layer in a multilayer network depicts the topological structure of a group of nodes corresponding to a particular relationship. The interactions among different layers imply how the interplay of different relations on the topology of each layer. For a single-layer network, network embedding methods have been proposed to project the nodes in a network into a continuous vector space with a relatively small number of dimensions, where the space embeds the social representations among nodes. These algorithms have been proved to have a better performance on a variety of regular graph analysis tasks, such as link prediction, or multi-label classification. In this paper, by extending a standard graph mining into multilayer network, we have proposed three methods ("network aggregation," "results aggregation" and "layer co-analysis") to project a multilayer network into a continuous vector space. From the evaluation, we have proved that comparing with regular link prediction methods, "layer co-analysis" achieved the best performance on most of the datasets, while "network aggregation" and "results aggregation" also have better performance than regular link prediction methods
    • …
    corecore