4 research outputs found

    An Artificial Neural Networks based Temperature Prediction Framework for Network-on-Chip based Multicore Platform

    Get PDF
    Continuous improvement in silicon process technologies has made possible the integration of hundreds of cores on a single chip. However, power and heat have become dominant constraints in designing these massive multicore chips causing issues with reliability, timing variations and reduced lifetime of the chips. Dynamic Thermal Management (DTM) is a solution to avoid high temperatures on the die. Typical DTM schemes only address core level thermal issues. However, the Network-on-chip (NoC) paradigm, which has emerged as an enabling methodology for integrating hundreds to thousands of cores on the same die can contribute significantly to the thermal issues. Moreover, the typical DTM is triggered reactively based on temperature measurements from on-chip thermal sensor requiring long reaction times whereas predictive DTM method estimates future temperature in advance, eliminating the chance of temperature overshoot. Artificial Neural Networks (ANNs) have been used in various domains for modeling and prediction with high accuracy due to its ability to learn and adapt. This thesis concentrates on designing an ANN prediction engine to predict the thermal profile of the cores and Network-on-Chip elements of the chip. This thermal profile of the chip is then used by the predictive DTM that combines both core level and network level DTM techniques. On-chip wireless interconnect which is recently envisioned to enable energy-efficient data exchange between cores in a multicore environment, will be used to provide a broadcast-capable medium to efficiently distribute thermal control messages to trigger and manage the DTM schemes

    Combined Dynamic Thermal Management Exploiting Broadcast-Capable Wireless Network-on-Chip Architecture

    Get PDF
    With the continuous scaling of device dimensions, the number of cores on a single die is constantly increasing. This integration of hundreds of cores on a single die leads to high power dissipation and thermal issues in modern Integrated Circuits (ICs). This causes problems related to reliability, timing violations and lifetime of electronic devices. Dynamic Thermal Management (DTM) techniques have emerged as potential solutions that mitigate the increasing temperatures on a die. However, considering the scaling of system sizes and the adoption of the Network-on-Chip (NoC) paradigm to serve as the interconnection fabric exacerbates the problem as both cores and NoC elements contribute to the increased heat dissipation on the chip. Typically, DTM techniques can either be proactive or reactive. Proactive DTM techniques, where the system has the ability to predict the thermal profile of the chip ahead of time are more desirable than reactive DTM techniques where the system utilizes thermal sensors to determine the current temperature of the chip. Moreover, DTM techniques either address core or NoC level thermal issues separately. Hence, this thesis proposes a combined proactive DTM technique that integrates both core level and NoC level DTM techniques. The combined DTM mechanism includes a dynamic temperature-aware routing approach for the NoC level elements, and includes task reallocation heuristics for the core level elements. On-chip wireless interconnects recently envisioned to enable energy-efficient data exchange between cores in a multicore chip will be used to provide a broadcast-capable medium to efficiently distribute thermal control messages to trigger and manage the DTM. Combining the proactive DTM technique with on-chip wireless interconnects, the on-chip temperature is restricted within target temperatures without significantly affecting the performance of the NoC based interconnection fabric of the multicore chip

    Design Trade-offs for reliable On-Chip Wireless Interconnects in NoC Platforms

    Get PDF
    The massive levels of integration following Moore\u27s Law making modern multi-core chips prevail in various domains ranging from scientific applications to bioinformatics applications for consumer electronics. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn\u27t need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. An efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. A token-passing protocol proposed to grant access of the wireless channel to competing transmitters. This limits the number of simultaneous users of the communication channel to one although multiple wireless hubs are deployed over the chip. In principle, a Frequency Division Multiple Access (FDMA) based medium access scheme would improve the utilization of the wireless resources. However, this requires design of multiple very precise, high frequency transceivers in non-overlapping frequency channels. Therefore, the scalability of this approach is limited by the state-of-the-art in transceiver design. The Code Division Multiple Access (CDMA) enables multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. The CDMA protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. The CDMA based MAC protocol outperforms the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. However, the reliability of CDMA based wireless NoC\u27s is limited, as the probability of error is eminent due to synchronization delays at the receiver. The thesis proposes the use of an advanced filter which improves the performance and also reduces the error due to synchronization delays. This thesis also proposes investigation of various channel modulation schemes on token passing wireless NoC\u27s to examine the performance and reliability of the system. The trade-off between performance and energy are established for the various conditions. The results are obtained using a modified cycle accurate simulator

    Interconnects architectures for many-core era using surface-wave communication

    Get PDF
    PhD ThesisNetworks-on-chip (NoCs) is a communication paradigm that has emerged aiming to address on-chip communication challenges and to satisfy interconnection demands for chip-multiprocessors (CMPs). Nonetheless, there is continuous demand for even higher computational power, which is leading to a relentless downscaling of CMOS technology to enable the integration of many-cores. However, technology downscaling is in favour of the gate nodes over wires in terms of latency and power consumption. Consequently, this has led to the era of many-core processors where power consumption and performance are governed by inter-core communications rather than core computation. Therefore, NoCs need to evolve from being merely metalbased implementations which threaten to be a performance and power bottleneck for many-core efficiency and scalability. To overcome such intensified inter-core communication challenges, this thesis proposes a novel interconnect technology: the surface-wave interconnect (SWI). This new RF-based on-chip interconnect has notable characteristics compared to cutting-edge on-chip interconnects in terms of CMOS compatibility, high speed signal propagation, low power dissipation, and massive signal fan-out. Nonetheless, the realization of the SWI requires investigations at different levels of abstraction, such as the device integration and RF engineering levels. The aim of this thesis is to address the networking and system level challenges and highlight the potential of this interconnect. This should encourage further research at other levels of abstraction. Two specific system-level challenges crucial in future many-core systems are tackled in this study, which are cross-the-chip global communication and one-to-many communication. This thesis makes four major contributions towards this aim. The first is reducing the NoC average-hop count, which would otherwise increase packet-latency exponentially, by proposing a novel hybrid interconnect architecture. This hybrid architecture can not only utilize both regular metal-wire and SWI, but also exploits merits of both bus and NoC architectures in terms of connectivity compared to other general-purpose on-chip interconnect architectures. The second contribution addresses global communication issues by developing a distance-based weighted-round-robin arbitration (DWA) algorithm. This technique prioritizes global communication to be send via SWI short-cuts, which offer more efficient power dissipation and faster across-the-chip signal propagation. Results obtained using a cycleaccurate simulator demonstrate the effectiveness of the proposed system architecture in terms of significant power reduction, considervii able average delay reduction and higher throughput compared to a regular NoC. The third contribution is in handling multicast communications, which are normally associated with traffic overload, hotspots and deadlocks and therefore increase, by an order of magnitude the power consumption and latency. This has been achieved by proposing a novel routing and centralized arbitration schemes that exploits the SWI0s remarkable fan-out features. The evaluation demonstrates drastic improvements in the effectiveness of the proposed architecture in terms of power consumption ( 2-10x) and performance ( 22x) but with negligible hardware overheads ( 2%). The fourth contribution is to further explore multicast contention handling in a flexible decentralized manner, where original techniques such as stretch-multicast and ID-tagging flow control have been developed. A comparison of these techniques shows that the decentralized approach is superior to the centralized approach with low traffic loads, while the latter outperforms the former near and after NoC saturation
    corecore