206,201 research outputs found
A Short Introduction to Model Selection, Kolmogorov Complexity and Minimum Description Length (MDL)
The concept of overfitting in model selection is explained and demonstrated
with an example. After providing some background information on information
theory and Kolmogorov complexity, we provide a short explanation of Minimum
Description Length and error minimization. We conclude with a discussion of the
typical features of overfitting in model selection.Comment: 20 pages, Chapter 1 of The Paradox of Overfitting, Master's thesis,
Rijksuniversiteit Groningen, 200
Recommended from our members
Random Prism: An Alternative to Random Forests.
Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting
- …
